Abstract
The evolutionary position of bichirs is disputed, and they have been variously aligned with ray-finned fish (Actinopterygii) or lobe-finned fish (Sarcopterygii), which also include tetrapods. Alternatively, they have been placed into their own group, the Brachiopterygii. The phylogenetic position of bichirs as possibly the most primitive living bony fish (Osteichthyes) made knowledge about their mitochondrial genome of considerable evolutionary interest. We determined the complete nucleotide sequence (16,624 bp) of the mitochondrial genome of a bichir, Polypterus ornatipinnis. Its genome contains 13 protein-coding genes, 22 tRNAs, two rRNAs and one major noncoding region. The genome's structure and organization show that this is the most basal vertebrate that conforms to the consensus vertebrate mtDNA gene order. Bichir mitochondrial protein-coding and ribosomal RNA genes have greater sequence similarity to ray-finned fish than to either lamprey or lungfish. Phylogenetic analyses suggest the bichir's placement as the most basal living member of the ray-finned fish and rule out its classification as a lobe-finned fish. Hence, its lobe-fins are probably not a shared-derived trait with those of lobe-finned fish (Sarcopterygii).
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Brown J. R., Gilbert T. L., Kowbel D. J., O'Hara P. J., Buroker N. E., Beckenbach A. T., Smith M. J. Nucleotide sequence of the apocytochrome B gene in white sturgeon mitochondrial DNA. Nucleic Acids Res. 1989 Jun 12;17(11):4389–4389. doi: 10.1093/nar/17.11.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao Y., Adachi J., Janke A., Päbo S., Hasegawa M. Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. J Mol Evol. 1994 Nov;39(5):519–527. doi: 10.1007/BF00173421. [DOI] [PubMed] [Google Scholar]
- Chang Y. S., Huang F. L., Lo T. B. The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol. 1994 Feb;38(2):138–155. doi: 10.1007/BF00166161. [DOI] [PubMed] [Google Scholar]
- Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doda J. N., Wright C. T., Clayton D. A. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6116–6120. doi: 10.1073/pnas.78.10.6116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hixson J. E., Wong T. W., Clayton D. A. Both the conserved stem-loop and divergent 5'-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem. 1986 Feb 15;261(5):2384–2390. [PubMed] [Google Scholar]
- Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980 Dec;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- Le H. L., Lecointre G., Perasso R. A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phylogenet Evol. 1993 Mar;2(1):31–51. doi: 10.1006/mpev.1993.1005. [DOI] [PubMed] [Google Scholar]
- Lee W. J., Kocher T. D. Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics. 1995 Feb;139(2):873–887. doi: 10.1093/genetics/139.2.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin A. P., Palumbi S. R. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Mol Biol Evol. 1993 Jul;10(4):873–891. doi: 10.1093/oxfordjournals.molbev.a040047. [DOI] [PubMed] [Google Scholar]
- Normark B. B., McCune A. R., Harrison R. G. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol Biol Evol. 1991 Nov;8(6):819–834. doi: 10.1093/oxfordjournals.molbev.a040685. [DOI] [PubMed] [Google Scholar]
- Ortí G., Meyer A. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Mol Biol Evol. 1996 Apr;13(4):556–573. doi: 10.1093/oxfordjournals.molbev.a025616. [DOI] [PubMed] [Google Scholar]
- Roe B. A., Ma D. P., Wilson R. K., Wong J. F. The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem. 1985 Aug 15;260(17):9759–9774. [PubMed] [Google Scholar]
- Russo C. A., Takezaki N., Nei M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol Biol Evol. 1996 Mar;13(3):525–536. doi: 10.1093/oxfordjournals.molbev.a025613. [DOI] [PubMed] [Google Scholar]
- Saccone C., Pesole G., Sbisá E. The main regulatory region of mammalian mitochondrial DNA: structure-function model and evolutionary pattern. J Mol Evol. 1991 Jul;33(1):83–91. doi: 10.1007/BF02100199. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tzeng C. S., Hui C. F., Shen S. C., Huang P. C. The complete nucleotide sequence of the Crossostoma lacustre mitochondrial genome: conservation and variations among vertebrates. Nucleic Acids Res. 1992 Sep 25;20(18):4853–4858. doi: 10.1093/nar/20.18.4853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walberg M. W., Clayton D. A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 1981 Oct 24;9(20):5411–5421. doi: 10.1093/nar/9.20.5411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong T. W., Clayton D. A. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell. 1985 Oct;42(3):951–958. doi: 10.1016/0092-8674(85)90291-0. [DOI] [PubMed] [Google Scholar]
- Zardoya R., Garrido-Pertierra A., Bautista J. M. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J Mol Evol. 1995 Dec;41(6):942–951. doi: 10.1007/BF00173174. [DOI] [PubMed] [Google Scholar]
- Zardoya R., Meyer A. Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5449–5454. doi: 10.1073/pnas.93.11.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zardoya R., Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol Biol Evol. 1996 Sep;13(7):933–942. doi: 10.1093/oxfordjournals.molbev.a025661. [DOI] [PubMed] [Google Scholar]
- Zardoya R., Meyer A. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. Genetics. 1996 Apr;142(4):1249–1263. doi: 10.1093/genetics/142.4.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
