Skip to main content
Genetics logoLink to Genetics
. 1996 Nov;144(3):1263–1270. doi: 10.1093/genetics/144.3.1263

Contingency Tests of Neutrality Using Intra/Interspecific Gene Trees: The Rejection of Neutrality for the Evolution of the Mitochondrial Cytochrome Oxidase II Gene in the Hominoid Primates

A R Templeton 1
PMCID: PMC1207617  PMID: 8913766

Abstract

Contingency tests of neutrality are performed using mitochondrial cytochrome oxidase II (COII) DNA sequences from hominoid primates, including humans. An intra-/interspecific haplotype tree is estimated, including a statistical assessment of ambiguities in tree topology and branch lengths. Four functional mutational categories are considered: silent and replacement substitutions in the transmembrane portion of the COII molecule, and silent and replacement substitutions in the cytosolic portion. Three tree topological mutational categories are used: intraspecific tips, intraspecific interiors, and interspecific fixed mutations. A full contingency analysis is performed, followed by nested contingency analyses. The analyses indicate that replacement mutations in the cytosolic portion are deleterious, and replacement mutations in the transmembrane portion and silent mutations throughout tend to be neutral. These conclusions are robust to ambiguities in tree topology and branch lengths. These inferences would have been impossible with an analysis that only contrasts silent and replacement vs. polymorphic and fixed. Also, intraspecific interior mutations have similar evolutionary dynamics to fixed mutations, so pooling tip and interior mutations into a single ``polymorphic'' class reduces power. Finally, the detected deleterious selection causes lowered inbreeding effective sizes, so arguments for small effective sizes in recent human evolutionary history based upon mitochondrial DNA may be invalid.

Full Text

The Full Text of this article is available as a PDF (791.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castelloe J., Templeton A. R. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol. 1994 Jun;3(2):102–113. doi: 10.1006/mpev.1994.1013. [DOI] [PubMed] [Google Scholar]
  2. Charlesworth D., Charlesworth B., Morgan M. T. The pattern of neutral molecular variation under the background selection model. Genetics. 1995 Dec;141(4):1619–1632. doi: 10.1093/genetics/141.4.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fu Y. X. Estimating effective population size or mutation rate using the frequencies of mutations of various classes in a sample of DNA sequences. Genetics. 1994 Dec;138(4):1375–1386. doi: 10.1093/genetics/138.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hudson R. R. Levels of DNA polymorphism and divergence yield important insights into evolutionary processes. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7425–7426. doi: 10.1073/pnas.90.16.7425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kellogg E. A., Appels R. Intraspecific and interspecific variation in 5S RNA genes are decoupled in diploid wheat relatives. Genetics. 1995 May;140(1):325–343. doi: 10.1093/genetics/140.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kilpatrick S. T., Rand D. M. Conditional hitchhiking of mitochondrial DNA: frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics. 1995 Nov;141(3):1113–1124. doi: 10.1093/genetics/141.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kimura M. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genet Res. 1968 Jun;11(3):247–269. doi: 10.1017/s0016672300011459. [DOI] [PubMed] [Google Scholar]
  9. Larsson S., Källebring B., Wittung P., Malmström B. G. The CuA center of cytochrome-c oxidase: electronic structure and spectra of models compared to the properties of CuA domains. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7167–7171. doi: 10.1073/pnas.92.16.7167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  11. Roff D. A., Bentzen P. The statistical analysis of mitochondrial DNA polymorphisms: chi 2 and the problem of small samples. Mol Biol Evol. 1989 Sep;6(5):539–545. doi: 10.1093/oxfordjournals.molbev.a040568. [DOI] [PubMed] [Google Scholar]
  12. Rogers A. R., Jorde L. B. Genetic evidence on modern human origins. Hum Biol. 1995 Feb;67(1):1–36. [PubMed] [Google Scholar]
  13. Ruvolo M., Pan D., Zehr S., Goldberg T., Disotell T. R., von Dornum M. Gene trees and hominoid phylogeny. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8900–8904. doi: 10.1073/pnas.91.19.8900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruvolo M., Zehr S., von Dornum M., Pan D., Chang B., Lin J. Mitochondrial COII sequences and modern human origins. Mol Biol Evol. 1993 Nov;10(6):1115–1135. doi: 10.1093/oxfordjournals.molbev.a040068. [DOI] [PubMed] [Google Scholar]
  15. Templeton A. R., Crandall K. A., Sing C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992 Oct;132(2):619–633. doi: 10.1093/genetics/132.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  17. Vigilant L., Stoneking M., Harpending H., Hawkes K., Wilson A. C. African populations and the evolution of human mitochondrial DNA. Science. 1991 Sep 27;253(5027):1503–1507. doi: 10.1126/science.1840702. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES