Skip to main content
Genetics logoLink to Genetics
. 1996 Nov;144(3):1283–1295. doi: 10.1093/genetics/144.3.1283

The Evolution of Genomic Imprinting

A Mochizuki 1, Y Takeda 1, Y Iwasa 1
PMCID: PMC1207619  PMID: 8913768

Abstract

In some mammalian genes, the paternally and maternally derived alleles are expressed differently: this phenomenon is called genomic imprinting. Here we study the evolution of imprinting using multivariate quantitative genetic models to examine the feasibility of the genetic conflict hypothesis. This hypothesis explains the observed imprinting patterns as an evolutionary outcome of the conflict between the paternal and maternal alleles. We consider the expression of a zygotic gene, which codes for an embryonic growth factor affecting the amount of maternal resources obtained through the placenta. We assume that the gene produces the growth factor in two different amounts depending on its parental origin. We show that genomic imprinting evolves easily if females have some probability of multiple partners. This is in conflict with the observation that not all genes controlling placental development are imprinted and that imprinting in some genes is not conserved between mice and humans. We show however that deleterious mutations in the coding region of the gene create selection against imprinting.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartolomei M. S., Zemel S., Tilghman S. M. Parental imprinting of the mouse H19 gene. Nature. 1991 May 9;351(6322):153–155. doi: 10.1038/351153a0. [DOI] [PubMed] [Google Scholar]
  2. Buiting K., Saitoh S., Gross S., Dittrich B., Schwartz S., Nicholls R. D., Horsthemke B. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995 Apr;9(4):395–400. doi: 10.1038/ng0495-395. [DOI] [PubMed] [Google Scholar]
  3. Chaillet J. R., Vogt T. F., Beier D. R., Leder P. Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell. 1991 Jul 12;66(1):77–83. doi: 10.1016/0092-8674(91)90140-t. [DOI] [PubMed] [Google Scholar]
  4. DeChiara T. M., Robertson E. J., Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell. 1991 Feb 22;64(4):849–859. doi: 10.1016/0092-8674(91)90513-x. [DOI] [PubMed] [Google Scholar]
  5. Eden S., Cedar H. Genomic imprinting. Action at a distance. Nature. 1995 May 4;375(6526):16–17. doi: 10.1038/375016a0. [DOI] [PubMed] [Google Scholar]
  6. Ferguson-Smith A. C., Cattanach B. M., Barton S. C., Beechey C. V., Surani M. A. Embryological and molecular investigations of parental imprinting on mouse chromosome 7. Nature. 1991 Jun 20;351(6328):667–670. doi: 10.1038/351667a0. [DOI] [PubMed] [Google Scholar]
  7. Haig D., Graham C. Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell. 1991 Mar 22;64(6):1045–1046. doi: 10.1016/0092-8674(91)90256-x. [DOI] [PubMed] [Google Scholar]
  8. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  9. Hao Y., Crenshaw T., Moulton T., Newcomb E., Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993 Oct 21;365(6448):764–767. doi: 10.1038/365764a0. [DOI] [PubMed] [Google Scholar]
  10. Hatada I., Mukai T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse. Nat Genet. 1995 Oct;11(2):204–206. doi: 10.1038/ng1095-204. [DOI] [PubMed] [Google Scholar]
  11. Iwasa Y., Pomiankowski A. Continual change in mate preferences. Nature. 1995 Oct 5;377(6548):420–422. doi: 10.1038/377420a0. [DOI] [PubMed] [Google Scholar]
  12. Jinno Y., Yun K., Nishiwaki K., Kubota T., Ogawa O., Reeve A. E., Niikawa N. Mosaic and polymorphic imprinting of the WT1 gene in humans. Nat Genet. 1994 Mar;6(3):305–309. doi: 10.1038/ng0394-305. [DOI] [PubMed] [Google Scholar]
  13. Kalscheuer V. M., Mariman E. C., Schepens M. T., Rehder H., Ropers H. H. The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet. 1993 Sep;5(1):74–78. doi: 10.1038/ng0993-74. [DOI] [PubMed] [Google Scholar]
  14. Li E., Beard C., Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993 Nov 25;366(6453):362–365. doi: 10.1038/366362a0. [DOI] [PubMed] [Google Scholar]
  15. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  16. Moore T., Haig D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 1991 Feb;7(2):45–49. doi: 10.1016/0168-9525(91)90230-N. [DOI] [PubMed] [Google Scholar]
  17. Moore T., Hurst L. D., Reik W. Genetic conflict and evolution of mammalian X-chromosome inactivation. Dev Genet. 1995;17(3):206–211. doi: 10.1002/dvg.1020170305. [DOI] [PubMed] [Google Scholar]
  18. Moore T., Reik W. Genetic conflict in early development: parental imprinting in normal and abnormal growth. Rev Reprod. 1996 May;1(2):73–77. doi: 10.1530/ror.0.0010073. [DOI] [PubMed] [Google Scholar]
  19. Ogawa O., McNoe L. A., Eccles M. R., Morison I. M., Reeve A. E. Human insulin-like growth factor type I and type II receptors are not imprinted. Hum Mol Genet. 1993 Dec;2(12):2163–2165. doi: 10.1093/hmg/2.12.2163. [DOI] [PubMed] [Google Scholar]
  20. Ozçelik T., Leff S., Robinson W., Donlon T., Lalande M., Sanjines E., Schinzel A., Francke U. Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader-Willi syndrome critical region. Nat Genet. 1992 Dec;2(4):265–269. doi: 10.1038/ng1292-265. [DOI] [PubMed] [Google Scholar]
  21. Perrot V., Richerd S., Valéro M. Transition from haploidy to diploidy. Nature. 1991 May 23;351(6324):315–317. doi: 10.1038/351315a0. [DOI] [PubMed] [Google Scholar]
  22. Peterson K., Sapienza C. Imprinting the genome: imprinted genes, imprinting genes, and a hypothesis for their interaction. Annu Rev Genet. 1993;27:7–31. doi: 10.1146/annurev.ge.27.120193.000255. [DOI] [PubMed] [Google Scholar]
  23. Reik W., Brown K. W., Schneid H., Le Bouc Y., Bickmore W., Maher E. R. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by altered imprinting pattern in the IGF2-H19 domain. Hum Mol Genet. 1995 Dec;4(12):2379–2385. doi: 10.1093/hmg/4.12.2379. [DOI] [PubMed] [Google Scholar]
  24. Reis A., Dittrich B., Greger V., Buiting K., Lalande M., Gillessen-Kaesbach G., Anvret M., Horsthemke B. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet. 1994 May;54(5):741–747. [PMC free article] [PubMed] [Google Scholar]
  25. Sasaki H., Allen N. D., Surani M. A. DNA methylation and genomic imprinting in mammals. EXS. 1993;64:469–486. doi: 10.1007/978-3-0348-9118-9_21. [DOI] [PubMed] [Google Scholar]
  26. Sasaki H., Hamada T., Ueda T., Seki R., Higashinakagawa T., Sakaki Y. Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development. 1991 Feb;111(2):573–581. doi: 10.1242/dev.111.2.573. [DOI] [PubMed] [Google Scholar]
  27. Sutcliffe J. S., Nakao M., Christian S., Orstavik K. H., Tommerup N., Ledbetter D. H., Beaudet A. L. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat Genet. 1994 Sep;8(1):52–58. doi: 10.1038/ng0994-52. [DOI] [PubMed] [Google Scholar]
  28. Ueda T., Yamazaki K., Suzuki R., Fujimoto H., Sasaki H., Sakaki Y., Higashinakagawa T. Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis. Development. 1992 Dec;116(4):831–839. doi: 10.1242/dev.116.4.831. [DOI] [PubMed] [Google Scholar]
  29. Varmuza S., Mann M. Genomic imprinting--defusing the ovarian time bomb. Trends Genet. 1994 Apr;10(4):118–123. doi: 10.1016/0168-9525(94)90212-7. [DOI] [PubMed] [Google Scholar]
  30. Wevrick R., Kerns J. A., Francke U. Identification of a novel paternally expressed gene in the Prader-Willi syndrome region. Hum Mol Genet. 1994 Oct;3(10):1877–1882. doi: 10.1093/hmg/3.10.1877. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES