Skip to main content
Genetics logoLink to Genetics
. 1996 Nov;144(3):1309–1320. doi: 10.1093/genetics/144.3.1309

Maximizing Transcription Efficiency Causes Codon Usage Bias

X Xia 1
PMCID: PMC1207621  PMID: 8913770

Abstract

The rate of protein synthesis depends on both the rate of initiation of translation and the rate of elongation of the peptide chain. The rate of initiation depends on the encountering rate between ribosomes and mRNA; this rate in turn depends on the concentration of ribosomes and mRNA. Thus, patterns of codon usage that increase transcriptional efficiency should increase mRNA concentration, which in turn would increase the initiation rate and the rate of protein synthesis. An optimality model of the transcriptional process is presented with the prediction that the most frequently used ribonucleotide at the third codon sites in mRNA molecules should be the same as the most abundant ribonucleotide in the cellular matrix where mRNA is transcribed. This prediction is supported by four kinds of evidence. First, A-ending codons are the most frequently used synonymous codons in mitochondria, where ATP is much more abundant than that of the three other ribonucleotides. Second, A-ending codons are more frequently used in mitochondrial genes than in nuclear genes. Third, protein genes from organisms with a high metabolic rate use more A-ending codons and have higher A content in their introns than those from organisms with a low metabolic rate.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennetzen J. L., Hall B. D. Codon selection in yeast. J Biol Chem. 1982 Mar 25;257(6):3026–3031. [PubMed] [Google Scholar]
  2. Bulmer M. Coevolution of codon usage and transfer RNA abundance. Nature. 1987 Feb 19;325(6106):728–730. doi: 10.1038/325728a0. [DOI] [PubMed] [Google Scholar]
  3. Fauron C. M., Wolstenholme D. R. Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res. 1980 Jun 11;8(11):2439–2452. doi: 10.1093/nar/8.11.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fauron C. M., Wolstenholme D. R. Intraspecific diversity of nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules of Drosophila mauritiana, Drosophila melanogaster and Drosophila simulans. Nucleic Acids Res. 1980 Nov 25;8(22):5391–5410. doi: 10.1093/nar/8.22.5391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goddard J. M., Wolstenholme D. R. Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res. 1980 Feb 25;8(4):741–757. [PMC free article] [PubMed] [Google Scholar]
  6. Gouy M., Gautier C. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 1982 Nov 25;10(22):7055–7074. doi: 10.1093/nar/10.22.7055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartl D. L., Moriyama E. N., Sawyer S. A. Selection intensity for codon bias. Genetics. 1994 Sep;138(1):227–234. doi: 10.1093/genetics/138.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol. 1981 Sep 25;151(3):389–409. doi: 10.1016/0022-2836(81)90003-6. [DOI] [PubMed] [Google Scholar]
  9. Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol. 1982 Jul 15;158(4):573–597. doi: 10.1016/0022-2836(82)90250-9. [DOI] [PubMed] [Google Scholar]
  10. Mathieu O., Krauer R., Hoppeler H., Gehr P., Lindstedt S. L., Alexander R. M., Taylor C. R., Weibel E. R. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol. 1981 Apr;44(1):113–128. doi: 10.1016/0034-5687(81)90079-7. [DOI] [PubMed] [Google Scholar]
  11. Robinson M., Lilley R., Little S., Emtage J. S., Yarranton G., Stephens P., Millican A., Eaton M., Humphreys G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 1984 Sep 11;12(17):6663–6671. doi: 10.1093/nar/12.17.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sharp P. M., Cowe E., Higgins D. G., Shields D. C., Wolfe K. H., Wright F. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 1988 Sep 12;16(17):8207–8211. doi: 10.1093/nar/16.17.8207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sharp P. M., Devine K. M. Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do 'prefer' optimal codons. Nucleic Acids Res. 1989 Jul 11;17(13):5029–5039. doi: 10.1093/nar/17.13.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sharp P. M., Li W. H. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987 Feb 11;15(3):1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sharp P. M., Tuohy T. M., Mosurski K. R. Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986 Jul 11;14(13):5125–5143. doi: 10.1093/nar/14.13.5125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Xia X. Body temperature, rate of biosynthesis, and evolution of genome size. Mol Biol Evol. 1995 Sep;12(5):834–842. doi: 10.1093/oxfordjournals.molbev.a040260. [DOI] [PubMed] [Google Scholar]
  17. Zischler H., Geisert H., von Haeseler A., Päbo S. A nuclear 'fossil' of the mitochondrial D-loop and the origin of modern humans. Nature. 1995 Nov 30;378(6556):489–492. doi: 10.1038/378489a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES