Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1337–1341. doi: 10.1093/genetics/144.4.1337

Adaptive Mutation and Slow-Growing Revertants of an Escherichia Coli Lacz Amber Mutant

M J Prival 1, T A Cebula 1
PMCID: PMC1207687  PMID: 8978023

Abstract

We have studied revertants, selected on lactose minimal agar medium, of the Escherichia coli lacZ(am) strain that was first used by Cairns and his colleagues to demonstrate the phenomenon of ``adaptive mutation.'' We have found, by performing appropriate reconstruction studies, that most of the late-arising Lac(+) revertants of this lac amber strain (appearing as colonies in 3-5 days) are slow-growing ochre suppressor mutants that probably existed in the culture prior to plating and cannot, therefore, be classified as ``adaptive.'' The appearance of a small number of fast-growing, late-arising Lac(+) revertants may result from residual cell growth and turnover or from phenomena related to the fact that the lacZ(am) mutation in strain SM195 is carried on an F' plasmid. Thus, the appearance of late-arising revertants in this lacZ(am) system does not provide convincing evidence that selective conditions specifically increase the rate of occurrence of favorable mutations.

Full Text

The Full Text of this article is available as a PDF (594.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cairns J., Foster P. L. Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics. 1991 Aug;128(4):695–701. doi: 10.1093/genetics/128.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cairns J., Overbaugh J., Miller S. The origin of mutants. Nature. 1988 Sep 8;335(6186):142–145. doi: 10.1038/335142a0. [DOI] [PubMed] [Google Scholar]
  3. Foster P. L., Trimarchi J. M. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science. 1994 Jul 15;265(5170):407–409. doi: 10.1126/science.8023164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Foster P. L., Trimarchi J. M. Conjugation is not required for adaptive reversion of an episomal frameshift mutation in Escherichia coli. J Bacteriol. 1995 Nov;177(22):6670–6671. doi: 10.1128/jb.177.22.6670-6671.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gizatullin F. S., Lyozin G. T. The origin of His+ revertants of Salmonella typhimurium obtained on selective medium. Res Microbiol. 1992 Sep;143(7):711–719. doi: 10.1016/0923-2508(92)90066-w. [DOI] [PubMed] [Google Scholar]
  6. Hall B. G. Selection, adaptation, and bacterial operons. Genome. 1989;31(1):265–271. doi: 10.1139/g89-044. [DOI] [PubMed] [Google Scholar]
  7. Hall B. G. Selection-induced mutations occur in yeast. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4300–4303. doi: 10.1073/pnas.89.10.4300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hall B. G. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics. 1990 Sep;126(1):5–16. doi: 10.1093/genetics/126.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris R. S., Longerich S., Rosenberg S. M. Recombination in adaptive mutation. Science. 1994 Apr 8;264(5156):258–260. doi: 10.1126/science.8146657. [DOI] [PubMed] [Google Scholar]
  10. Kunz B. A., Glickman B. W. The infidelity of conjugal DNA transfer in Escherichia coli. Genetics. 1983 Nov;105(3):489–500. doi: 10.1093/genetics/105.3.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kupchella E., Cebula T. A. Analysis of Salmonella typhimurium hisD3052 revertants: the use of oligodeoxyribonucleotide colony hybridization, PCR, and direct sequencing in mutational analysis. Environ Mol Mutagen. 1991;18(4):224–230. doi: 10.1002/em.2850180404. [DOI] [PubMed] [Google Scholar]
  12. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Peters J. E., Bartoszyk I. M., Dheer S., Benson S. A. Redundant homosexual F transfer facilitates selection-induced reversion of plasmid mutations. J Bacteriol. 1996 Jun;178(11):3037–3043. doi: 10.1128/jb.178.11.3037-3043.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peters J. E., Benson S. A. Redundant transfer of F' plasmids occurs between Escherichia coli cells during nonlethal selections. J Bacteriol. 1995 Feb;177(3):847–850. doi: 10.1128/jb.177.3.847-850.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Prival M. J., Cebula T. A. Sequence analysis of mutations arising during prolonged starvation of Salmonella typhimurium. Genetics. 1992 Oct;132(2):303–310. doi: 10.1093/genetics/132.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosenberg S. M., Harris R. S., Longerich S., Galloway A. M. Recombination-dependent mutation in non-dividing cells. Mutat Res. 1996 Feb 19;350(1):69–76. doi: 10.1016/0027-5107(95)00092-5. [DOI] [PubMed] [Google Scholar]
  17. Rosenberg S. M., Longerich S., Gee P., Harris R. S. Adaptive mutation by deletions in small mononucleotide repeats. Science. 1994 Jul 15;265(5170):405–407. doi: 10.1126/science.8023163. [DOI] [PubMed] [Google Scholar]
  18. Ryan F. J. Spontaneous Mutation in Non-Dividing Bacteria. Genetics. 1955 Sep;40(5):726–738. doi: 10.1093/genetics/40.5.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stahl F. W. Bacterial genetics. A unicorn in the garden. Nature. 1988 Sep 8;335(6186):112–113. doi: 10.1038/335112a0. [DOI] [PubMed] [Google Scholar]
  20. Stahl F. W. Genetics. If it smells like a unicorn... Nature. 1990 Aug 30;346(6287):791–791. doi: 10.1038/346791a0. [DOI] [PubMed] [Google Scholar]
  21. Steele D. F., Jinks-Robertson S. An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics. 1992 Sep;132(1):9–21. doi: 10.1093/genetics/132.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES