Abstract
In a previous report, we found that mutations at the mitochondrial genome integrity locus, MGI1, can convert Kluyveromyces lactis into a petite-positive yeast. In this report, we describe the isolation of the MGI1 gene and show that it encodes the β-subunit of the mitochondrial F(1)-ATPase. The site of mutation in four independently isolated mgi1 alleles is at Arg435, which has changed to Gly in three cases and Ile in the fourth isolate. Disruption of MGI1 does not lead to the production of mitochondrial genome deletion mutants, indicating that an assembled F(1) complex is needed for the ``gain-of-function'' phenotype found in mgi1 point mutants. The location of Arg435 in the β-subunit, as deduced from the three-dimensional structure of the bovine F(1)-ATPase, together with mutational sites in the previously identified mgi2 and mgi5 alleles, suggests that interaction of the β- and α- (MGI2) subunits with the γ-subunit (MGI5) is likely to be affected by the mutations.
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
- BULDER C. J. LETHALITY OF THE PETITE MUTATION IN PETITE NEGATIVE YEASTS. Antonie Van Leeuwenhoek. 1964;30:442–454. doi: 10.1007/BF02046758. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Clark-Walker G. D. Mutations in MGI genes convert Kluyveromyces lactis into a petite-positive yeast. Genetics. 1993 Mar;133(3):517–525. doi: 10.1093/genetics/133.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. J., Clark-Walker G. D. Specific mutations in alpha- and gamma-subunits of F1-ATPase affect mitochondrial genome integrity in the petite-negative yeast Kluyveromyces lactis. EMBO J. 1995 Jul 3;14(13):3277–3286. doi: 10.1002/j.1460-2075.1995.tb07331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. J., Clark-Walker G. D. sir2 mutants of Kluyveromyces lactis are hypersensitive to DNA-targeting drugs. Mol Cell Biol. 1994 Jul;14(7):4501–4508. doi: 10.1128/mcb.14.7.4501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X. J., Fukuhara H. A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. Gene. 1988 Sep 30;69(2):181–192. doi: 10.1016/0378-1119(88)90429-5. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Wésolowski-Louvel M., Fukuhara H. Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Mol Gen Genet. 1992 May;233(1-2):97–105. doi: 10.1007/BF00587566. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Wésolowski-Louvel M., Tanguy-Rougeau C., Bianchi M. M., Fabiani L., Saliola M., Falcone C., Frontali L., Fukuhara H. A gene-cloning system for Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production. J Basic Microbiol. 1988;28(4):211–220. doi: 10.1002/jobm.3620280402. [DOI] [PubMed] [Google Scholar]
- Cross R. L. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem. 1981;50:681–714. doi: 10.1146/annurev.bi.50.070181.003341. [DOI] [PubMed] [Google Scholar]
- De Deken R. H. The Crabtree effects and its relation to the petite mutation. J Gen Microbiol. 1966 Aug;44(2):157–165. doi: 10.1099/00221287-44-2-157. [DOI] [PubMed] [Google Scholar]
- Duncan T. M., Parsonage D., Senior A. E. Structure of the nucleotide-binding domain in the beta-subunit of Escherichia coli F1-ATPase. FEBS Lett. 1986 Nov 10;208(1):1–6. doi: 10.1016/0014-5793(86)81519-8. [DOI] [PubMed] [Google Scholar]
- Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
- Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Noumi T., Maeda M. ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem. 1989;58:111–136. doi: 10.1146/annurev.bi.58.070189.000551. [DOI] [PubMed] [Google Scholar]
- Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haffter P., Fox T. D. Nuclear mutations in the petite-negative yeast Schizosaccharomyces pombe allow growth of cells lacking mitochondrial DNA. Genetics. 1992 Jun;131(2):255–260. doi: 10.1093/genetics/131.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy C. M., Galeotti C. L., Clark-Walker G. D. Deletions and rearrangements in Kluyveromyces lactis mitochondrial DNA. Curr Genet. 1989 Dec;16(5-6):419–427. doi: 10.1007/BF00340721. [DOI] [PubMed] [Google Scholar]
- Hill J., Donald K. A., Griffiths D. E., Donald G. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 1991 Oct 25;19(20):5791–5791. doi: 10.1093/nar/19.20.5791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwamoto A., Miki J., Maeda M., Futai M. H(+)-ATPase gamma subunit of Escherichia coli. Role of the conserved carboxyl-terminal region. J Biol Chem. 1990 Mar 25;265(9):5043–5048. [PubMed] [Google Scholar]
- Maggio M. B., Parsonage D., Senior A. E. A mutation in the alpha-subunit of F1-ATPase from Escherichia coli affects the binding of F1 to the membrane. J Biol Chem. 1988 Apr 5;263(10):4619–4623. [PubMed] [Google Scholar]
- Moroney J. V., Andreo C. S., Vallejos R. H., McCarty R. E. Uncoupling and energy transfer inhibition of photophosphorylation by sulfhydryl reagents. J Biol Chem. 1980 Jul 25;255(14):6670–6674. [PubMed] [Google Scholar]
- Moroney J. V., McCarty R. E. Reversible uncoupling of photophosphorylation by a new bifunctional maleimide. J Biol Chem. 1979 Sep 25;254(18):8951–8955. [PubMed] [Google Scholar]
- Mullis K. B., Faloona F. A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol. 1987;155:335–350. doi: 10.1016/0076-6879(87)55023-6. [DOI] [PubMed] [Google Scholar]
- Norais N., Promé D., Velours J. ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J Biol Chem. 1991 Sep 5;266(25):16541–16549. [PubMed] [Google Scholar]
- Paul M. F., Ackerman S., Yue J., Arselin G., Velours J., Tzagolof A., Ackermann S [corrected to Ackerman S. ]. Cloning of the yeast ATP3 gene coding for the gamma-subunit of F1 and characterization of atp3 mutants. J Biol Chem. 1994 Oct 21;269(42):26158–26164. [PubMed] [Google Scholar]
- Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
- Senior A. E. ATP synthesis by oxidative phosphorylation. Physiol Rev. 1988 Jan;68(1):177–231. doi: 10.1152/physrev.1988.68.1.177. [DOI] [PubMed] [Google Scholar]
- Shin K., Nakamoto R. K., Maeda M., Futai M. F0F1-ATPase gamma subunit mutations perturb the coupling between catalysis and transport. J Biol Chem. 1992 Oct 15;267(29):20835–20839. [PubMed] [Google Scholar]
- Soga S., Noumi T., Takeyama M., Maeda M., Futai M. Mutational replacements of conserved amino acid residues in the alpha subunit change the catalytic properties of Escherichia coli F1-ATPase. Arch Biochem Biophys. 1989 Feb 1;268(2):643–648. doi: 10.1016/0003-9861(89)90332-9. [DOI] [PubMed] [Google Scholar]
- Tingle M., Herman A., Halvorson H. O. Characterization and mapping of histidine genes in Saccharomyces lactis. Genetics. 1968 Mar;58(3):361–371. doi: 10.1093/genetics/58.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uh M., Jones D., Mueller D. M. The gene coding for the yeast oligomycin sensitivity-conferring protein. J Biol Chem. 1990 Nov 5;265(31):19047–19052. [PubMed] [Google Scholar]
- Weiss M. A., McCarty R. E. Cross-linking within a subunit of coupling factor 1 increases the proton permeability of spinach chloroplast thylakoids. J Biol Chem. 1977 Nov 25;252(22):8007–8012. [PubMed] [Google Scholar]
- Wesolowski-Louvel M., Tanguy-Rougeau C., Fukuhara H. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast. 1988 Mar;4(1):71–81. doi: 10.1002/yea.320040108. [DOI] [PubMed] [Google Scholar]