Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1471–1477. doi: 10.1093/genetics/144.4.1471

Correlation of Genetic and Physical Maps at the a Mating-Type Locus of Coprinus Cinereus

L Lukens 1, H Yicun 1, G May 1
PMCID: PMC1207700  PMID: 8978036

Abstract

The A mating type locus of Coprinus cinereus is remarkable for its extreme diversity, with over 100 different alleles in natural populations. Classical genetic studies have demonstrated that this hypervariability arises in part from recombination between two subloci of A, alpha and beta, although more recent population genetic data have indicated a third segregating sublocus. In this study, we characterized the molecular basis by which recombination generates nonparental A mating types. We mapped the frequency and location of all recombination events in two crosses and correlated the genetic and physical maps of A. We found that all recombination events were located in 6 kb of noncoding DNA between the alpha and beta subloci and that the rate of recombination in this noncoding region matched that generally observed for this genome. No recombination within gene clusters or within coding regions was observed, and the two alpha and beta subloci described in genetic analyses correlated with the previously characterized alpha and beta gene clusters. We propose that pairs of genes constitute both the sex determining and the hereditary unit of A.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes D. C., Nasrallah J. B. Physical linkage of the SLG and SRK genes at the self-incompatibility locus of Brassica oleracea. Mol Gen Genet. 1993 Jan;236(2-3):369–373. doi: 10.1007/BF00277135. [DOI] [PubMed] [Google Scholar]
  2. Charlesworth B. Evolutionary genetics. The nature and origin of mating types. Curr Biol. 1994 Aug 1;4(8):739–741. doi: 10.1016/s0960-9822(00)00165-2. [DOI] [PubMed] [Google Scholar]
  3. Charlesworth B. The evolution of sex chromosomes. Science. 1991 Mar 1;251(4997):1030–1033. doi: 10.1126/science.1998119. [DOI] [PubMed] [Google Scholar]
  4. Clark A. G., Kao T. H. Excess nonsynonymous substitution of shared polymorphic sites among self-incompatibility alleles of Solanaceae. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9823–9827. doi: 10.1073/pnas.88.21.9823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Day P R. The Structure of the a Mating Type Locus in Coprinus Lagopus. Genetics. 1960 May;45(5):641–650. doi: 10.1093/genetics/45.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Emerson S. A Preliminary Survey of the Oenothera Organensis Population. Genetics. 1939 Jun;24(4):524–537. doi: 10.1093/genetics/24.4.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emerson S. The Genetics of Self-Incompatibility in Oenothera Organensis. Genetics. 1938 Mar;23(2):190–202. doi: 10.1093/genetics/23.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  9. Ferris P. J., Goodenough U. W. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell. 1994 Mar 25;76(6):1135–1145. doi: 10.1016/0092-8674(94)90389-1. [DOI] [PubMed] [Google Scholar]
  10. Gillissen B., Bergemann J., Sandmann C., Schroeer B., Bölker M., Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992 Feb 21;68(4):647–657. doi: 10.1016/0092-8674(92)90141-x. [DOI] [PubMed] [Google Scholar]
  11. Kües U., Asante-Owusu R. N., Mutasa E. S., Tymon A. M., Pardo E. H., O'Shea S. F., Göttgens B., Casselton L. A. Two classes of homeodomain proteins specify the multiple a mating types of the mushroom Coprinus cinereus. Plant Cell. 1994 Oct;6(10):1467–1475. doi: 10.1105/tpc.6.10.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kües U., Richardson W. V., Tymon A. M., Mutasa E. S., Göttgens B., Gaubatz S., Gregoriades A., Casselton L. A. The combination of dissimilar alleles of the A alpha and A beta gene complexes, whose proteins contain homeo domain motifs, determines sexual development in the mushroom Coprinus cinereus. Genes Dev. 1992 Apr;6(4):568–577. doi: 10.1101/gad.6.4.568. [DOI] [PubMed] [Google Scholar]
  13. Kües U., Tymon A. M., Richardson W. V., May G., Gieser P. T., Casselton L. A. A mating-type factors of Coprinus cinereus have variable numbers of specificity genes encoding two classes of homeodomain proteins. Mol Gen Genet. 1994 Oct 17;245(1):45–52. doi: 10.1007/BF00279749. [DOI] [PubMed] [Google Scholar]
  14. May G., Le Chevanton L., Pukkila P. J. Molecular analysis of the Coprinus cinereus mating type A factor demonstrates an unexpectedly complex structure. Genetics. 1991 Jul;128(3):529–538. doi: 10.1093/genetics/128.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rivers B. A., Bernatzky R., Robinson S. J., Jahnen-Dechent W. Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet. 1993 Apr;238(3):419–427. doi: 10.1007/BF00292001. [DOI] [PubMed] [Google Scholar]
  16. Specht C. A., Stankis M. M., Novotny C. P., Ullrich R. C. Mapping the heterogeneous DNA region that determines the nine A alpha mating-type specificities of Schizophyllum commune. Genetics. 1994 Jul;137(3):709–714. doi: 10.1093/genetics/137.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Staben C., Yanofsky C. Neurospora crassa a mating-type region. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4917–4921. doi: 10.1073/pnas.87.13.4917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wright S. The Distribution of Self-Sterility Alleles in Populations. Genetics. 1939 Jun;24(4):538–552. doi: 10.1093/genetics/24.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wu T. C., Lichten M. Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics. 1995 May;140(1):55–66. doi: 10.1093/genetics/140.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zolan M. E., Pukkila P. J. Inheritance of DNA methylation in Coprinus cinereus. Mol Cell Biol. 1986 Jan;6(1):195–200. doi: 10.1128/mcb.6.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES