Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1589–1600. doi: 10.1093/genetics/144.4.1589

Germline Transformation Using a Prune Cdna Rescues Prune/Killer of Prune Lethality and the Prune Eye Color Phenotype in Drosophila

L Timmons 1, A Shearn 1
PMCID: PMC1207711  PMID: 8978047

Abstract

Null mutations in the prune gene of Drosophila melanogaster result in prune eye color due to reductions in red pigment accumulation. When one copy of the awd(Killer of prune) mutant gene is present in a prune background, the animals die. The cause of prune/Killer of prune lethality remains unknown. The genomic region characterized for the prune locus is transcriptionally active and complex, with multiple and overlapping transcripts. Despite the transcriptional complexity of the genomic region of prune, accumulated evidence suggests that the prune locus is small and consists of a single transcription unit, since every prune allele to date exhibits both prune eye color and prune/Killer of prune lethality. A functional prune product from a single, full-length cDNA was identified in this study that can rescue both the eye phenotype and prune/Killer of prune lethality. The DNA sequences of several mutant prune alleles along with Western blot analysis of mutant proteins provide convincing evidence that prune mutations are nulls, and that the cDNA identified in this study encodes the only product of the prune locus.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Biggs J., Hersperger E., Steeg P. S., Liotta L. A., Shearn A. A Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell. 1990 Nov 30;63(5):933–940. doi: 10.1016/0092-8674(90)90496-2. [DOI] [PubMed] [Google Scholar]
  3. Biggs J., Tripoulas N., Hersperger E., Dearolf C., Shearn A. Analysis of the lethal interaction between the prune and Killer of prune mutations of Drosophila. Genes Dev. 1988 Oct;2(10):1333–1343. doi: 10.1101/gad.2.10.1333. [DOI] [PubMed] [Google Scholar]
  4. Dearolf C. R., Hersperger E., Shearn A. Developmental consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol. 1988 Sep;129(1):159–168. doi: 10.1016/0012-1606(88)90170-4. [DOI] [PubMed] [Google Scholar]
  5. Dearolf C. R., Tripoulas N., Biggs J., Shearn A. Molecular consequences of awdb3, a cell-autonomous lethal mutation of Drosophila induced by hybrid dysgenesis. Dev Biol. 1988 Sep;129(1):169–178. doi: 10.1016/0012-1606(88)90171-6. [DOI] [PubMed] [Google Scholar]
  6. Evans B. A., Howells A. J. Control of drosopterin synthesis in Drosophila melanogaster: mutants showing an altered pattern of GTP cyclohydrolase activity during development. Biochem Genet. 1978 Feb;16(1-2):13–26. doi: 10.1007/BF00484381. [DOI] [PubMed] [Google Scholar]
  7. Fan C. L., Brown G. M. Partial purification and properties of guanosine triphosphate cyclohydrolase from Drosophila melanogaster. Biochem Genet. 1976 Apr;14(3-4):259–270. doi: 10.1007/BF00484765. [DOI] [PubMed] [Google Scholar]
  8. Ferré J., Silva F. J., Real M. D., Ménsua J. L. Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster. Biochem Genet. 1986 Aug;24(7-8):545–569. doi: 10.1007/BF00504334. [DOI] [PubMed] [Google Scholar]
  9. Frolov M. V., Zverlov V. V., Alatortsev V. E. The mRNA product of the Drosophila gene prune is spliced and encodes a protein containing a putative transmembrane domain. Mol Gen Genet. 1994 Feb;242(4):478–483. doi: 10.1007/BF00281800. [DOI] [PubMed] [Google Scholar]
  10. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  11. Kornberg A. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J Bacteriol. 1995 Feb;177(3):491–496. doi: 10.1128/jb.177.3.491-496.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Landry S. J., Gierasch L. M. Recognition of nascent polypeptides for targeting and folding. Trends Biochem Sci. 1991 Apr;16(4):159–163. doi: 10.1016/0968-0004(91)90060-9. [DOI] [PubMed] [Google Scholar]
  13. Lascu I., Chaffotte A., Limbourg-Bouchon B., Véron M. A Pro/Ser substitution in nucleoside diphosphate kinase of Drosophila melanogaster (mutation killer of prune) affects stability but not catalytic efficiency of the enzyme. J Biol Chem. 1992 Jun 25;267(18):12775–12781. [PubMed] [Google Scholar]
  14. Lifschytz E., Falk R. The action of the gene prune (pn) in Drosophila melanogaster. Genet Res. 1969 Aug;14(1):53–61. doi: 10.1017/s0016672300001841. [DOI] [PubMed] [Google Scholar]
  15. Mackay W. J., O'Donnell J. M. A genetic analysis of the pteridine biosynthetic enzyme, guanosine triphosphate cyclohydrolase, in Drosophila melanogaster. Genetics. 1983 Sep;105(1):35–53. doi: 10.1093/genetics/105.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Orevi N., Falk R. Temperature-sensitive prune (pn) mutations of Drosophila melanogaster. Mutat Res. 1975 Dec;33(2-3):193–200. doi: 10.1016/0027-5107(75)90195-5. [DOI] [PubMed] [Google Scholar]
  17. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Struhl K. Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem Sci. 1989 Apr;14(4):137–140. doi: 10.1016/0968-0004(89)90145-X. [DOI] [PubMed] [Google Scholar]
  19. Sturtevant A H. A Highly Specific Complementary Lethal System in Drosophila Melanogaster. Genetics. 1956 Jan;41(1):118–123. doi: 10.1093/genetics/41.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Teng D. H., Bender L. B., Engele C. M., Tsubota S., Venkatesh T. Isolation and characterization of the prune locus of Drosophila melanogaster. Genetics. 1991 Jun;128(2):373–380. doi: 10.1093/genetics/128.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  22. Timmons L., Hersperger E., Woodhouse E., Xu J., Liu L. Z., Shearn A. The expression of the Drosophila awd gene during normal development and in neoplastic brain tumors caused by lgl mutations. Dev Biol. 1993 Aug;158(2):364–379. doi: 10.1006/dbio.1993.1195. [DOI] [PubMed] [Google Scholar]
  23. Timmons L., Xu J., Hersperger G., Deng X. F., Shearn A. Point mutations in awdKpn which revert the prune/Killer of prune lethal interaction affect conserved residues that are involved in nucleoside diphosphate kinase substrate binding and catalysis. J Biol Chem. 1995 Sep 29;270(39):23021–23030. doi: 10.1074/jbc.270.39.23021. [DOI] [PubMed] [Google Scholar]
  24. Wurst H., Kornberg A. A soluble exopolyphosphatase of Saccharomyces cerevisiae. Purification and characterization. J Biol Chem. 1994 Apr 15;269(15):10996–11001. [PubMed] [Google Scholar]
  25. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES