Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799

Quantitative Trait Loci Analysis for Five Milk Production Traits on Chromosome Six in the Dutch Holstein-Friesian Population

R J Spelman 1, W Coppieters 1, L Karim 1, JAM van-Arendonk 1, H Bovenhuis 1
PMCID: PMC1207729  PMID: 8978065

Abstract

Twenty Dutch Holstein-Friesian families, with a total of 715 sires, were evaluated in a granddaughter experiment design for marker-QTL associations. Five traits--milk, fat and protein yield and fat and protein percent--were analyzed. Across-family analysis was undertaken using multimarker regression principles. One and two QTL models were fitted. Critical values for the test statistic were calculated empirically by permuting the data. Individual trait distributions of permuted test statistics differed and, thus distributions, had to be calculated for each trait. Experimentwise critical values, which account for evaluating marker-QTL associations on all 29 autosomal bovine chromosomes and for five traits, were calculated. A QTL for protein percent was identified in one and two QTL models and was significant at the 1 and 2% level, respectively. Extending the multimarker regression approach to an analysis including two QTL was limited by families not being informative at all markers, which resulted in singularity. Below average heterozygosity for the first and last marker lowered information content for the first and last marker bracket. Highly informative markers at the ends of the mapped chromosome would overcome the decrease in information content in the first and last marker bracket and singularity for the two QTL model.

Full Text

The Full Text of this article is available as a PDF (884.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishop M. D., Kappes S. M., Keele J. W., Stone R. T., Sunden S. L., Hawkins G. A., Toldo S. S., Fries R., Grosz M. D., Yoo J. A genetic linkage map for cattle. Genetics. 1994 Feb;136(2):619–639. doi: 10.1093/genetics/136.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bovenhuis H., Van Arendonk J. A., Korver S. Associations between milk protein polymorphisms and milk production traits. J Dairy Sci. 1992 Sep;75(9):2549–2559. doi: 10.3168/jds.S0022-0302(92)78017-5. [DOI] [PubMed] [Google Scholar]
  3. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haley C. S., Knott S. A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb) 1992 Oct;69(4):315–324. doi: 10.1038/hdy.1992.131. [DOI] [PubMed] [Google Scholar]
  6. Haley C. S., Knott S. A., Elsen J. M. Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics. 1994 Mar;136(3):1195–1207. doi: 10.1093/genetics/136.3.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jansen R. C. Interval mapping of multiple quantitative trait loci. Genetics. 1993 Sep;135(1):205–211. doi: 10.1093/genetics/135.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knott S. A., Haley C. S. Maximum likelihood mapping of quantitative trait loci using full-sib families. Genetics. 1992 Dec;132(4):1211–1222. doi: 10.1093/genetics/132.4.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lander E. S., Schork N. J. Genetic dissection of complex traits. Science. 1994 Sep 30;265(5181):2037–2048. doi: 10.1126/science.8091226. [DOI] [PubMed] [Google Scholar]
  12. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  13. VanRaden P. M., Wiggans G. R. Derivation, calculation, and use of national animal model information. J Dairy Sci. 1991 Aug;74(8):2737–2746. doi: 10.3168/jds.S0022-0302(91)78453-1. [DOI] [PubMed] [Google Scholar]
  14. Weller J. I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics. 1986 Sep;42(3):627–640. [PubMed] [Google Scholar]
  15. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES