Skip to main content
Genetics logoLink to Genetics
. 1996 Dec;144(4):1851–1869. doi: 10.1093/genetics/144.4.1851

Excision Patterns of Activator (Ac) and Dissociation (Ds) Elements in Zea Mays L.: Implications for the Regulation of Transposition

M Heinlein 1
PMCID: PMC1207733  PMID: 8978069

Abstract

The pattern of aleurone variegation of maize kernels carrying Ac and bz-m2(DI) as reporter allele for Ac activity depends on the dosage of both Ac and Ds. Alterations of Ac dosage can abolish Ds excision at certain times and allow it to occur at other times. wx-m7 and wx-m9 are different Ac insertions in the Waxy gene which have different dosage effects on Ds excision. Kernels, heterozygous for the two Ac alleles and being either wx-m7/wx-m7/wx-m9 or wx-m9/wx-m9/wx-m7 exhibit characteristic patterns of predominantly late excisions; this is in strong contrast to the pattern of early excisions present on wx-m7/wx-m7/wx-m7 homozygotes. This observation supports the hypothesis that the Ac alleles express different amounts of transposase (TPase) during development and that above a certain level of TPase transposition is inhibited. Furthermore, experimental results suggest that the frequency of Ac-induced events is influenced by the dosage and composition of the transactivated Ds or Ac allele. Thus, transposition frequency seems not to be exclusively determined in trans by the amount of active TPase, but also by specific cis-acting properties of the TPase substrate.

Full Text

The Full Text of this article is available as a PDF (12.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Becker D., Lütticke R., Li M., Starlinger P. Control of excision frequency of maize transposable element Ds in Petunia protoplasts. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5552–5556. doi: 10.1073/pnas.89.12.5552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chaudhuri S., Messing J. Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4867–4871. doi: 10.1073/pnas.91.11.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cone K. C., Burr F. A., Burr B. Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9631–9635. doi: 10.1073/pnas.83.24.9631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coupland G., Baker B., Schell J., Starlinger P. Characterization of the maize transposable element Ac by internal deletions. EMBO J. 1988 Dec 1;7(12):3653–3659. doi: 10.1002/j.1460-2075.1988.tb03246.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Courage-Tebbe U., Döring H. P., Fedoroff N., Starlinger P. The controlling element Ds at the Shrunken locus in Zea mays: structure of the unstable sh-m5933 allele and several revertants. Cell. 1983 Sep;34(2):383–393. doi: 10.1016/0092-8674(83)90372-0. [DOI] [PubMed] [Google Scholar]
  6. Dooner H. K., Belachew A. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics. 1991 Nov;129(3):855–862. doi: 10.1093/genetics/129.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dooner H., English J., Ralston E., Weck E. A single genetic unit specifies two transposition functions in the maize element activator. Science. 1986 Oct 10;234(4773):210–211. doi: 10.1126/science.234.4773.210. [DOI] [PubMed] [Google Scholar]
  8. Döring H. P., Nelsen-Salz B., Garber R., Tillmann E. Double Ds elements are involved in specific chromosome breakage. Mol Gen Genet. 1989 Oct;219(1-2):299–305. doi: 10.1007/BF00261191. [DOI] [PubMed] [Google Scholar]
  9. Döring H. P., Pahl I., Durany M. Chromosomal rearrangements caused by the aberrant transposition of double Ds elements are formed by Ds and adjacent non-Ds sequences. Mol Gen Genet. 1990 Oct;224(1):40–48. doi: 10.1007/BF00259449. [DOI] [PubMed] [Google Scholar]
  10. Döring H. P., Starlinger P. Barbara McClintock's controlling elements: now at the DNA level. Cell. 1984 Dec;39(2 Pt 1):253–259. doi: 10.1016/0092-8674(84)90002-3. [DOI] [PubMed] [Google Scholar]
  11. Escoubas J. M., Prère M. F., Fayet O., Salvignol I., Galas D., Zerbib D., Chandler M. Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J. 1991 Mar;10(3):705–712. doi: 10.1002/j.1460-2075.1991.tb08000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fedoroff N. V., Furtek D. B., Nelson O. E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc Natl Acad Sci U S A. 1984 Jun;81(12):3825–3829. doi: 10.1073/pnas.81.12.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fedoroff N., Wessler S., Shure M. Isolation of the transposable maize controlling elements Ac and Ds. Cell. 1983 Nov;35(1):235–242. doi: 10.1016/0092-8674(83)90226-x. [DOI] [PubMed] [Google Scholar]
  14. Feldmar S., Kunze R. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 1991 Dec;10(13):4003–4010. doi: 10.1002/j.1460-2075.1991.tb04975.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franken P., Niesbach-Klösgen U., Weydemann U., Maréchal-Drouard L., Saedler H., Wienand U. The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in. EMBO J. 1991 Sep;10(9):2605–2612. doi: 10.1002/j.1460-2075.1991.tb07802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fusswinkel H., Schein S., Courage U., Starlinger P., Kunze R. Detection and abundance of mRNA and protein encoded by transposable element activator (Ac) in maize. Mol Gen Genet. 1991 Feb;225(2):186–192. doi: 10.1007/BF00269846. [DOI] [PubMed] [Google Scholar]
  17. Heinlein M., Brattig T., Kunze R. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and Petunia protoplasts. Plant J. 1994 May;5(5):705–714. doi: 10.1111/j.1365-313x.1994.00705.x. [DOI] [PubMed] [Google Scholar]
  18. Kermicle J. L., Alleman M. Gametic imprinting in maize in relation to the angiosperm life cycle. Dev Suppl. 1990:9–14. [PubMed] [Google Scholar]
  19. Kermicle J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 1970 Sep;66(1):69–85. doi: 10.1093/genetics/66.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kunze R., Behrens U., Courage-Franzkowiak U., Feldmar S., Kühn S., Lütticke R. Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7094–7098. doi: 10.1073/pnas.90.15.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kunze R., Starlinger P. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 1989 Nov;8(11):3177–3185. doi: 10.1002/j.1460-2075.1989.tb08476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kunze R., Stochaj U., Laufs J., Starlinger P. Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J. 1987 Jun;6(6):1555–1563. doi: 10.1002/j.1460-2075.1987.tb02400.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lund G., Ciceri P., Viotti A. Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J. 1995 Oct;8(4):571–581. doi: 10.1046/j.1365-313x.1995.8040571.x. [DOI] [PubMed] [Google Scholar]
  24. MCCLINTOCK B. Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol. 1956 Feb;(8):58–74. [PubMed] [Google Scholar]
  25. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  26. Misra S., Rio D. C. Cytotype control of Drosophila P element transposition: the 66 kd protein is a repressor of transposase activity. Cell. 1990 Jul 27;62(2):269–284. doi: 10.1016/0092-8674(90)90365-l. [DOI] [PubMed] [Google Scholar]
  27. Pohlman R. F., Fedoroff N. V., Messing J. The nucleotide sequence of the maize controlling element Activator. Cell. 1984 Jun;37(2):635–643. doi: 10.1016/0092-8674(84)90395-7. [DOI] [PubMed] [Google Scholar]
  28. Ralston E. J., English J. J., Dooner H. K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics. 1988 May;119(1):185–197. doi: 10.1093/genetics/119.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ralston E., English J., Dooner H. K. Chromosome-breaking structure in maize involving a fractured Ac element. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9451–9455. doi: 10.1073/pnas.86.23.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scofield S. R., English J. J., Jones J. D. High level expression of the Activator transposase gene inhibits the excision of Dissociation in tobacco cotyledons. Cell. 1993 Nov 5;75(3):507–517. doi: 10.1016/0092-8674(93)90385-4. [DOI] [PubMed] [Google Scholar]
  31. Sekine Y., Ohtsubo E. Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4609–4613. doi: 10.1073/pnas.86.12.4609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Simons R. W., Kleckner N. Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet. 1988;22:567–600. doi: 10.1146/annurev.ge.22.120188.003031. [DOI] [PubMed] [Google Scholar]
  33. Wang L., Heinlein M., Kunze R. Methylation pattern of Activator transposase binding sites in maize endosperm. Plant Cell. 1996 Apr;8(4):747–758. doi: 10.1105/tpc.8.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weil C. F., Wessler S. R. Molecular evidence that chromosome breakage by Ds elements is caused by aberrant transposition. Plant Cell. 1993 May;5(5):515–522. doi: 10.1105/tpc.5.5.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wessler S. R., Varagona M. J. Molecular basis of mutations at the waxy locus of maize: correlation with the fine structure genetic map. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4177–4181. doi: 10.1073/pnas.82.12.4177. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES