Skip to main content
Genetics logoLink to Genetics
. 1997 Jan;145(1):97–110. doi: 10.1093/genetics/145.1.97

A Eubacterial Gene Conferring Spectinomycin Resistance on Chlamydomonas Reinhardtii: Integration into the Nuclear Genome and Gene Expression

H Cerutti 1, A M Johnson 1, N W Gillham 1, J E Boynton 1
PMCID: PMC1207788  PMID: 9017393

Abstract

We have constructed a dominant selectable marker for nuclear transformation of C. reinhardtii, composed of the coding sequence of the eubacterial aadA gene (conferring spectinomycin resistance) fused to the 5' and 3' untranslated regions of the endogenous RbcS2 gene. Spectinomycin-resistant transformants isolated by direct selection (1) contain the chimeric gene(s) stably integrated into the nuclear genome, (2) show cosegregation of the resistance phenotype with the introduced DNA, and (3) synthesize the expected mRNA and protein. Small linearized plasmids appeared to be inserted into the nuclear genome preferentially through their ends, with relatively few large deletions and/or rearrangements. Multiple copy transformants often integrated concatemers of transforming DNA. Our detailed analysis of the complex integration patterns of plasmid DNA in C. reinhardtii nuclear transformants should be useful for improving the technique of insertional mutagenesis. We also found that the spectinomycin-resistance phenotype was unstable in about half of the transformants. When maintained under nonselective conditions, neither the aadA mRNA nor the AadA protein were detected in these subclones. Moreover, since the integrated transforming DNA was not altered or lost, expression of the RbcS2::aadA::RbcS2 gene(s) appears to be repressed. Measurements of transcriptional activity, mRNA accumulation, and mRNA stability suggest that expression of this chimeric gene(s) may also be affected by rapid RNA degradation, presumably due to defects in mRNA processing and/or nuclear export. Thus, both gene silencing and transcript instability, rather than biased codon usage, may explain the difficulties encountered in the expression of foreign genes in the nuclear genome of Chlamydomonas.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adang M. J., Brody M. S., Cardineau G., Eagan N., Roush R. T., Shewmaker C. K., Jones A., Oakes J. V., McBride K. E. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol. 1993 Mar;21(6):1131–1145. doi: 10.1007/BF00023609. [DOI] [PubMed] [Google Scholar]
  2. Bishop J. O., Smith P. Mechanism of chromosomal integration of microinjected DNA. Mol Biol Med. 1989 Aug;6(4):283–298. [PubMed] [Google Scholar]
  3. Blankenship J. E., Kindle K. L. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain. Mol Cell Biol. 1992 Nov;12(11):5268–5279. doi: 10.1128/mcb.12.11.5268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boynton J. E., Gillham N. W. Chloroplast transformation in Chlamydomonas. Methods Enzymol. 1993;217:510–536. doi: 10.1016/0076-6879(93)17087-l. [DOI] [PubMed] [Google Scholar]
  5. Boynton J. E., Gillham N. W., Harris E. H., Hosler J. P., Johnson A. M., Jones A. R., Randolph-Anderson B. L., Robertson D., Klein T. M., Shark K. B. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science. 1988 Jun 10;240(4858):1534–1538. doi: 10.1126/science.2897716. [DOI] [PubMed] [Google Scholar]
  6. Brown L. E., Sprecher S. L., Keller L. R. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol. 1991 Apr;11(4):2328–2332. doi: 10.1128/mcb.11.4.2328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carter K. C. Spatial localization of pre-mRNA transcription and processing within the nucleus. Curr Opin Biotechnol. 1994 Dec;5(6):579–584. doi: 10.1016/0958-1669(94)90078-7. [DOI] [PubMed] [Google Scholar]
  8. Cerutti H., Johnson A. M., Boynton J. E., Gillham N. W. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol Cell Biol. 1995 Jun;15(6):3003–3011. doi: 10.1128/mcb.15.6.3003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cerutti H., Osman M., Grandoni P., Jagendorf A. T. A homolog of Escherichia coli RecA protein in plastids of higher plants. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8068–8072. doi: 10.1073/pnas.89.17.8068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Halluin K., Bonne E., Bossut M., De Beuckeleer M., Leemans J. Transgenic maize plants by tissue electroporation. Plant Cell. 1992 Dec;4(12):1495–1505. doi: 10.1105/tpc.4.12.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies J. P., Weeks D. P., Grossman A. R. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 1992 Jun 25;20(12):2959–2965. doi: 10.1093/nar/20.12.2959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Debuchy R., Purton S., Rochaix J. D. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989 Oct;8(10):2803–2809. doi: 10.1002/j.1460-2075.1989.tb08426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dehio C., Schell J. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5538–5542. doi: 10.1073/pnas.91.12.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Diener D. R., Curry A. M., Johnson K. A., Williams B. D., Lefebvre P. A., Kindle K. L., Rosenbaum J. L. Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5739–5743. doi: 10.1073/pnas.87.15.5739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donath M., Mendel R., Cerff R., Martin W. Intron-dependent transient expression of the maize GapA1 gene. Plant Mol Biol. 1995 Jul;28(4):667–676. doi: 10.1007/BF00021192. [DOI] [PubMed] [Google Scholar]
  16. Dunahay T. G. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques. 1993 Sep;15(3):452-5, 457-8, 460. [PubMed] [Google Scholar]
  17. Ehretsmann C. P., Chandler L. A., Bourgeois S. A nuclear post-transcriptional mechanism mediates the induction of fibronectin by glucocorticoids. Mol Cell Endocrinol. 1995 Apr 28;110(1-2):185–194. doi: 10.1016/0303-7207(95)03531-b. [DOI] [PubMed] [Google Scholar]
  18. Felber B. K., Hadzopoulou-Cladaras M., Cladaras C., Copeland T., Pavlakis G. N. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1495–1499. doi: 10.1073/pnas.86.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ferris P. J., Woessner J. P., Goodenough U. W. A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol Biol Cell. 1996 Aug;7(8):1235–1248. doi: 10.1091/mbc.7.8.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Flavell R. B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3490–3496. doi: 10.1073/pnas.91.9.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Folger K. R., Wong E. A., Wahl G., Capecchi M. R. Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol. 1982 Nov;2(11):1372–1387. doi: 10.1128/mcb.2.11.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Goldschmidt-Clermont M., Rahire M. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J Mol Biol. 1986 Oct 5;191(3):421–432. doi: 10.1016/0022-2836(86)90137-3. [DOI] [PubMed] [Google Scholar]
  23. Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. Nucleic Acids Res. 1991 Aug 11;19(15):4083–4089. doi: 10.1093/nar/19.15.4083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gruber H., Kirzinger S. H., Schmitt R. Expression of the Volvox gene encoding nitrate reductase: mutation-dependent activation of cryptic splice sites and intron-enhanced gene expression from a cDNA. Plant Mol Biol. 1996 Apr;31(1):1–12. doi: 10.1007/BF00020601. [DOI] [PubMed] [Google Scholar]
  25. Gumpel N. J., Rochaix J. D., Purton S. Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet. 1994 Nov-Dec;26(5-6):438–442. doi: 10.1007/BF00309931. [DOI] [PubMed] [Google Scholar]
  26. Hall L. M., Taylor K. B., Jones D. D. Expression of a foreign gene in Chlamydomonas reinhardtii. Gene. 1993 Feb 14;124(1):75–81. doi: 10.1016/0378-1119(93)90763-s. [DOI] [PubMed] [Google Scholar]
  27. Hasnain S. E., Manavathu E. K., Leung W. C. DNA-mediated transformation of Chlamydomonas reinhardi cells: use of aminoglycoside 3'-phosphotransferase as a selectable marker. Mol Cell Biol. 1985 Dec;5(12):3647–3650. doi: 10.1128/mcb.5.12.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hill K. L., Li H. H., Singer J., Merchant S. Isolation and structural characterization of the Chlamydomonas reinhardtii gene for cytochrome c6. Analysis of the kinetics and metal specificity of its copper-responsive expression. J Biol Chem. 1991 Aug 15;266(23):15060–15067. [PubMed] [Google Scholar]
  29. Hourcade D. E. Marker rescue from bleomycin-treated Chlamydomonas reinhardi. Genetics. 1983 Jul;104(3):391–404. doi: 10.1093/genetics/104.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Huang M. T., Gorman C. M. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Res. 1990 Feb 25;18(4):937–947. doi: 10.1093/nar/18.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hwang S., Herrin D. L. Control of lhc gene transcription by the circadian clock in Chlamydomonas reinhardtii. Plant Mol Biol. 1994 Oct;26(2):557–569. doi: 10.1007/BF00013743. [DOI] [PubMed] [Google Scholar]
  32. Imbault P., Wittemer C., Johanningmeier U., Jacobs J. D., Howell S. H. Structure of the Chlamydomonas reinhardtii cabII-1 gene encoding a chlorophyll-a/b-binding protein. Gene. 1988 Dec 20;73(2):397–407. doi: 10.1016/0378-1119(88)90504-5. [DOI] [PubMed] [Google Scholar]
  33. Jasin M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 1996 Jun;12(6):224–228. doi: 10.1016/0168-9525(96)10019-6. [DOI] [PubMed] [Google Scholar]
  34. Keller L. R., Schloss J. A., Silflow C. D., Rosenbaum J. L. Transcription of alpha- and beta-tubulin genes in vitro in isolated Chlamydomonas reinhardi nuclei. J Cell Biol. 1984 Mar;98(3):1138–1143. doi: 10.1083/jcb.98.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. doi: 10.1073/pnas.87.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kindle K. L., Schnell R. A., Fernández E., Lefebvre P. A. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol. 1989 Dec;109(6 Pt 1):2589–2601. doi: 10.1083/jcb.109.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kozak M. Regulation of translation in eukaryotic systems. Annu Rev Cell Biol. 1992;8:197–225. doi: 10.1146/annurev.cb.08.110192.001213. [DOI] [PubMed] [Google Scholar]
  38. Kozminski K. G., Diener D. R., Rosenbaum J. L. High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton. 1993;25(2):158–170. doi: 10.1002/cm.970250205. [DOI] [PubMed] [Google Scholar]
  39. LeDizet M., Piperno G. The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol Biol Cell. 1995 Jun;6(6):697–711. doi: 10.1091/mbc.6.6.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Liu X., Mertz J. E. HnRNP L binds a cis-acting RNA sequence element that enables intron-dependent gene expression. Genes Dev. 1995 Jul 15;9(14):1766–1780. doi: 10.1101/gad.9.14.1766. [DOI] [PubMed] [Google Scholar]
  41. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  42. Luehrsen K. R., Walbot V. Intron creation and polyadenylation in maize are directed by AU-rich RNA. Genes Dev. 1994 May 1;8(9):1117–1130. doi: 10.1101/gad.8.9.1117. [DOI] [PubMed] [Google Scholar]
  43. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Mayfield S. P., Kindle K. L. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2087–2091. doi: 10.1073/pnas.87.6.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Merrihew R. V., Marburger K., Pennington S. L., Roth D. B., Wilson J. H. High-frequency illegitimate integration of transfected DNA at preintegrated target sites in a mammalian genome. Mol Cell Biol. 1996 Jan;16(1):10–18. doi: 10.1128/mcb.16.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Murray E. E., Rocheleau T., Eberle M., Stock C., Sekar V., Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol Biol. 1991 Jun;16(6):1035–1050. doi: 10.1007/BF00016075. [DOI] [PubMed] [Google Scholar]
  47. Nelson J. A., Savereide P. B., Lefebvre P. A. The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol. 1994 Jun;14(6):4011–4019. doi: 10.1128/mcb.14.6.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Orrù D., del Grosso N., Angeletti B., D'Ambrosio E. An improved protocol to generate high-efficiency single-stranded DNA probes by PCR. Biotechniques. 1993 Jun;14(6):905–906. [PubMed] [Google Scholar]
  49. Pazour G. J., Sineshchekov O. A., Witman G. B. Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol. 1995 Oct;131(2):427–440. doi: 10.1083/jcb.131.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Perlak F. J., Fuchs R. L., Dean D. A., McPherson S. L., Fischhoff D. A. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3324–3328. doi: 10.1073/pnas.88.8.3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Plessis A., Dujon B. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination. Gene. 1993 Nov 30;134(1):41–50. doi: 10.1016/0378-1119(93)90172-y. [DOI] [PubMed] [Google Scholar]
  52. Prentki P., Binda A., Epstein A. Plasmid vectors for selecting IS1-promoted deletions in cloned DNA: sequence analysis of the omega interposon. Gene. 1991 Jul 15;103(1):17–23. doi: 10.1016/0378-1119(91)90385-o. [DOI] [PubMed] [Google Scholar]
  53. Randolph-Anderson B. L., Boynton J. E., Gillham N. W., Harris E. H., Johnson A. M., Dorthu M. P., Matagne R. F. Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet. 1993 Jan;236(2-3):235–244. doi: 10.1007/BF00277118. [DOI] [PubMed] [Google Scholar]
  54. Rapp J. C., Baumgartner B. J., Mullet J. Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes. Transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem. 1992 Oct 25;267(30):21404–21411. [PubMed] [Google Scholar]
  55. Riggs C. D., Bates G. W. Stable transformation of tobacco by electroporation: evidence for plasmid concatenation. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5602–5606. doi: 10.1073/pnas.83.15.5602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rochaix J. D., van Dillewijn J. Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature. 1982 Mar 4;296(5852):70–72. doi: 10.1038/296070a0. [DOI] [PubMed] [Google Scholar]
  57. Salvador M. L., Klein U., Bogorad L. Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J. 1993 Feb;3(2):213–219. doi: 10.1046/j.1365-313x.1993.t01-13-00999.x. [DOI] [PubMed] [Google Scholar]
  58. Schiestl R. H., Dominska M., Petes T. D. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol. 1993 May;13(5):2697–2705. doi: 10.1128/mcb.13.5.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Singh G., Supp D. M., Schreiner C., McNeish J., Merker H. J., Copeland N. G., Jenkins N. A., Potter S. S., Scott W. legless insertional mutation: morphological, molecular, and genetic characterization. Genes Dev. 1991 Dec;5(12A):2245–2255. doi: 10.1101/gad.5.12a.2245. [DOI] [PubMed] [Google Scholar]
  60. Sodeinde O. A., Kindle K. L. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9199–9203. doi: 10.1073/pnas.90.19.9199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stevens D. R., Rochaix J. D., Purton S. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet. 1996 Apr 24;251(1):23–30. doi: 10.1007/BF02174340. [DOI] [PubMed] [Google Scholar]
  62. Sullivan M. L., Green P. J. Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol Biol. 1993 Dec;23(6):1091–1104. doi: 10.1007/BF00042344. [DOI] [PubMed] [Google Scholar]
  63. Svab Z., Harper E. C., Jones J. D., Maliga P. Aminoglycoside-3''-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol. 1990 Feb;14(2):197–205. doi: 10.1007/BF00018560. [DOI] [PubMed] [Google Scholar]
  64. Tam L. W., Lefebvre P. A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics. 1993 Oct;135(2):375–384. doi: 10.1093/genetics/135.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tang D. K., Qiao S. Y., Wu M. Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int. 1995 Aug;36(5):1025–1035. [PubMed] [Google Scholar]
  66. Wolffe A. P., Meric F. Coupling transcription to translation: a novel site for the regulation of eukaryotic gene expression. Int J Biochem Cell Biol. 1996 Mar;28(3):247–257. doi: 10.1016/1357-2725(95)00141-7. [DOI] [PubMed] [Google Scholar]
  67. Wurtz E. A., Sears B. B., Rabert D. K., Shepherd H. S., Gillham N. W., Boynton J. E. A specific increase in chloroplast gene mutations following growth of Chlamydomonas in 5-fluorodeoxyuridine. Mol Gen Genet. 1979 Mar 5;170(3):235–242. doi: 10.1007/BF00267056. [DOI] [PubMed] [Google Scholar]
  68. Zhang S., Sheng J., Liu Y., Mehdy M. C. Fungal Elicitor-Induced Bean Proline-Rich Protein mRNA Down-Regulation Is Due to Destabilization That Is Transcription and Translation Dependent. Plant Cell. 1993 Sep;5(9):1089–1099. doi: 10.1105/tpc.5.9.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES