Skip to main content
Genetics logoLink to Genetics
. 1997 Feb;145(2):375–382. doi: 10.1093/genetics/145.2.375

Origin and Evolution of a New Gene Descended from Alcohol Dehydrogenase in Drosophila

D J Begun 1
PMCID: PMC1207802  PMID: 9071591

Abstract

Drosophila alcohol dehydrogenase (Adh) is highly conserved in size, organization, and amino acid sequence. Adh-ψ was hypothesized to be a pseudogene derived from an Adh duplication in the repleta group of Drosophila; however, several results from molecular analyses of this gene conflict with currently held notions of molecular evolution. Perhaps the most difficult observations to reconcile with the pseudogene hypothesis are that the hypothetical replacement sites of Adh-ψ evolve only slightly more quickly than replacement sites of closely related, functional Adh genes, and that the replacement sites of the pseudogenes evolve considerably more slowly than neighboring silent sites. The data have been presented as a paradox that challenges our understanding of the mechanisms underlying DNA sequence divergence. Here I show that Adh-ψ is actually a new, functional gene recently descended from an Adh duplication. This descendant recruited ~60 new N-terminal amino acids, is considerably more basic than ADH, and is evolving at a faster rate than Adh. Furthermore, though the descendant is clearly functional, as inferred from molecular evolution and population genetic data, it retains no obvious ADH activity. This probably reflects functional divergence from its Adh ancestor.

Full Text

The Full Text of this article is available as a PDF (859.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson P. W., Mills L. E., Starmer W. T., Sullivan D. T. Structure and evolution of the Adh genes of Drosophila mojavensis. Genetics. 1988 Nov;120(3):713–723. doi: 10.1093/genetics/120.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benyajati C., Place A. R., Powers D. A., Sofer W. Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. Proc Natl Acad Sci U S A. 1981 May;78(5):2717–2721. doi: 10.1073/pnas.78.5.2717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
  4. Cavener D. R. Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 1987 Feb 25;15(4):1353–1361. doi: 10.1093/nar/15.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Endo T., Ikeo K., Gojobori T. Large-scale search for genes on which positive selection may operate. Mol Biol Evol. 1996 May;13(5):685–690. doi: 10.1093/oxfordjournals.molbev.a025629. [DOI] [PubMed] [Google Scholar]
  6. Fischer J. A., Maniatis T. Structure and transcription of the Drosophila mulleri alcohol dehydrogenase genes. Nucleic Acids Res. 1985 Oct 11;13(19):6899–6917. doi: 10.1093/nar/13.19.6899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim Biophys Acta. 1989 Jan 18;988(1):1–45. doi: 10.1016/0304-4157(89)90002-6. [DOI] [PubMed] [Google Scholar]
  8. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jaussi R. Homologous nuclear-encoded mitochondrial and cytosolic isoproteins. A review of structure, biosynthesis and genes. Eur J Biochem. 1995 Mar 15;228(3):551–561. doi: 10.1111/j.1432-1033.1995.tb20294.x. [DOI] [PubMed] [Google Scholar]
  10. Jeffs P. S., Holmes E. C., Ashburner M. The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol Biol Evol. 1994 Mar;11(2):287–304. doi: 10.1093/oxfordjournals.molbev.a040110. [DOI] [PubMed] [Google Scholar]
  11. Jeffs P., Ashburner M. Processed pseudogenes in Drosophila. Proc Biol Sci. 1991 May 22;244(1310):151–159. doi: 10.1098/rspb.1991.0064. [DOI] [PubMed] [Google Scholar]
  12. Long M., Langley C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993 Apr 2;260(5104):91–95. doi: 10.1126/science.7682012. [DOI] [PubMed] [Google Scholar]
  13. McDonald J. H., Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652–654. doi: 10.1038/351652a0. [DOI] [PubMed] [Google Scholar]
  14. Menotti-Raymond M., Starmer W. T., Sullivan D. T. Characterization of the structure and evolution of the Adh region of Drosophila hydei. Genetics. 1991 Feb;127(2):355–366. doi: 10.1093/genetics/127.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyata T., Miyazawa S., Yasunaga T. Two types of amino acid substitutions in protein evolution. J Mol Evol. 1979 Mar 15;12(3):219–236. doi: 10.1007/BF01732340. [DOI] [PubMed] [Google Scholar]
  16. Sullivan D. T., Starmer W. T., Curtiss S. W., Menotti-Raymond M., Yum J. Unusual molecular evolution of an Adh pseudogene in Drosophila. Mol Biol Evol. 1994 May;11(3):443–458. doi: 10.1093/oxfordjournals.molbev.a040125. [DOI] [PubMed] [Google Scholar]
  17. Watterson G. A. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. doi: 10.1016/0040-5809(75)90020-9. [DOI] [PubMed] [Google Scholar]
  18. Yang Z., Kumar S., Nei M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics. 1995 Dec;141(4):1641–1650. doi: 10.1093/genetics/141.4.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yum J. S., Starmer W. T., Sullivan D. T. The structure of the Adh locus of Drosophila mettleri: an intermediate in the evolution of the Adh locus in the repleta group of Drosophila. Mol Biol Evol. 1991 Nov;8(6):857–867. doi: 10.1093/oxfordjournals.molbev.a040692. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES