Skip to main content
Genetics logoLink to Genetics
. 1997 Mar;145(3):627–635. doi: 10.1093/genetics/145.3.627

Molecular Characterization of Two High Affinity Sulfate Transporters in Saccharomyces Cerevisiae

H Cherest 1, J C Davidian 1, D Thomas 1, V Benes 1, W Ansorge 1, Y Surdin-Kerjan 1
PMCID: PMC1207848  PMID: 9055073

Abstract

Strains resistant to the toxic analogues of sulfate, selenate and chromate have been isolated. Their genetic analysis allowed us to identify four genes. One, called MET28, encodes a transcriptional factor. The three other genes, called SUL1, SUL2 and SUL3, encode proteins involved in sulfate transport. The sequence of Sul1p and Sul2p indicate that they are integral membrane proteins exhibiting, respectively, 11 and 10 transmembrane domains. Moreover, Sul1p and Sul2p share a high degree of similarity. Sulfate transport kinetic studies made with parental and mutant strains show that, as expected from genetic results, Saccharomyces cerevisiae has two high affinity sulfate transport systems. Sul3p has been shown to be involved in the transcriptional regulation of the SUL2 gene.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. A., Huprikar S. S., Kochian L. V., Lucas W. J., Gaber R. F. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3736–3740. doi: 10.1073/pnas.89.9.3736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baldari C., Cesareni G. Plasmids pEMBLY: new single-stranded shuttle vectors for the recovery and analysis of yeast DNA sequences. Gene. 1985;35(1-2):27–32. doi: 10.1016/0378-1119(85)90154-4. [DOI] [PubMed] [Google Scholar]
  4. Bissig M., Hagenbuch B., Stieger B., Koller T., Meier P. J. Functional expression cloning of the canalicular sulfate transport system of rat hepatocytes. J Biol Chem. 1994 Jan 28;269(4):3017–3021. [PubMed] [Google Scholar]
  5. Busch A. E., Waldegger S., Herzer T., Biber J., Markovich D., Murer H., Lang F. Electrogenic cotransport of Na+ and sulfate in Xenopus oocytes expressing the cloned Na+SO4(2-) transport protein NaSi-1. J Biol Chem. 1994 Apr 29;269(17):12407–12409. [PubMed] [Google Scholar]
  6. Cherest H., Nguyen N. T., Surdin-Kerjan Y. Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae. Gene. 1985;34(2-3):269–281. doi: 10.1016/0378-1119(85)90136-2. [DOI] [PubMed] [Google Scholar]
  7. Cherest H., Surdin-Kerjan Y. Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics. 1992 Jan;130(1):51–58. doi: 10.1093/genetics/130.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cram J. Characteristics of sulfate transport across plasmalemma and tonoplast of carrot root cells. Plant Physiol. 1983 May;72(1):204–211. doi: 10.1104/pp.72.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Green L. S., Laudenbach D. E., Grossman A. R. A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1949–1953. doi: 10.1073/pnas.86.6.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higgins D. G. CLUSTAL V: multiple alignment of DNA and protein sequences. Methods Mol Biol. 1994;25:307–318. doi: 10.1385/0-89603-276-0:307. [DOI] [PubMed] [Google Scholar]
  11. Hästbacka J., de la Chapelle A., Mahtani M. M., Clines G., Reeve-Daly M. P., Daly M., Hamilton B. A., Kusumi K., Trivedi B., Weaver A. The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell. 1994 Sep 23;78(6):1073–1087. doi: 10.1016/0092-8674(94)90281-x. [DOI] [PubMed] [Google Scholar]
  12. Ish-Horowicz D., Burke J. F. Rapid and efficient cosmid cloning. Nucleic Acids Res. 1981 Jul 10;9(13):2989–2998. doi: 10.1093/nar/9.13.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ketter J. S., Jarai G., Fu Y. H., Marzluf G. A. Nucleotide sequence, messenger RNA stability, and DNA recognition elements of cys-14, the structural gene for sulfate permease II in Neurospora crassa. Biochemistry. 1991 Feb 19;30(7):1780–1787. doi: 10.1021/bi00221a008. [DOI] [PubMed] [Google Scholar]
  14. Kuras L., Thomas D. Identification of the yeast methionine biosynthetic genes that require the centromere binding factor 1 for their transcriptional activation. FEBS Lett. 1995 Jun 19;367(1):15–18. doi: 10.1016/0014-5793(95)00528-h. [DOI] [PubMed] [Google Scholar]
  15. Markovich D., Forgo J., Stange G., Biber J., Murer H. Expression cloning of rat renal Na+/SO4(2-) cotransport. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8073–8077. doi: 10.1073/pnas.90.17.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marzluf G. A. Genetics and molecular genetics of sulfur assimilation in the fungi. Adv Genet. 1994;31:187–206. doi: 10.1016/s0065-2660(08)60398-3. [DOI] [PubMed] [Google Scholar]
  17. Meier P. J., Valantinas J., Hugentobler G., Rahm I. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. Am J Physiol. 1987 Oct;253(4 Pt 1):G461–G468. doi: 10.1152/ajpgi.1987.253.4.G461. [DOI] [PubMed] [Google Scholar]
  18. Roomans G. M., Kuypers G. A., Theuvenet A. P., Borst-Pauwels G. W. Kinetics of sulfate uptake by yeast. Biochim Biophys Acta. 1979 Feb 20;551(1):197–206. doi: 10.1016/0005-2736(79)90365-1. [DOI] [PubMed] [Google Scholar]
  19. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  20. Schweinfest C. W., Henderson K. W., Suster S., Kondoh N., Papas T. S. Identification of a colon mucosa gene that is down-regulated in colon adenomas and adenocarcinomas. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4166–4170. doi: 10.1073/pnas.90.9.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sentenac H., Bonneaud N., Minet M., Lacroute F., Salmon J. M., Gaymard F., Grignon C. Cloning and expression in yeast of a plant potassium ion transport system. Science. 1992 May 1;256(5057):663–665. doi: 10.1126/science.1585180. [DOI] [PubMed] [Google Scholar]
  22. Sirko A., Hryniewicz M., Hulanicka D., Böck A. Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol. 1990 Jun;172(6):3351–3357. doi: 10.1128/jb.172.6.3351-3357.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith F. W., Ealing P. M., Hawkesford M. J., Clarkson D. T. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373–9377. doi: 10.1073/pnas.92.20.9373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith I. K. Characterization of sulfate transport in cultured tobacco cells. Plant Physiol. 1976 Sep;58(3):358–362. doi: 10.1104/pp.58.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomas D., Barbey R., Henry D., Surdin-Kerjan Y. Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol. 1992 Oct;138(10):2021–2028. doi: 10.1099/00221287-138-10-2021. [DOI] [PubMed] [Google Scholar]
  26. Thomas D., Barbey R., Surdin-Kerjan Y. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem. 1990 Sep 15;265(26):15518–15524. [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES