Skip to main content
Genetics logoLink to Genetics
. 1997 Apr;145(4):1015–1030. doi: 10.1093/genetics/145.4.1015

Genetics of a Pheromonal Difference Affecting Sexual Isolation between Drosophila Mauritiana and D. Sechellia

J A Coyne 1, B Charlesworth 1
PMCID: PMC1207872  PMID: 9093854

Abstract

Females of the sibling species Drosophila sechellia and D. mauritiana differ in their cuticular hydrocarbons: the predominant compound in D. sechellia is 7,11-heptacosadiene (7,11-HD), while that in D. mauritiana is 7-tricosene (7-T). We investigate the genetic basis of this difference and its involvement in reproductive isolation between the species. Behavioral studies involving hydrocarbon transfer suggest that these compounds play a large role in the sexual isolation between D. mauritiana males and D. sechellia females, while sexual isolation in the reciprocal hybridization results more from differences in female behavior than hydrocarbons. This interspecific difference in hydrocarbon profile is due to evolutionary change at a minimum of six loci, all on the third chromosome. The localization of evolutionary change to the third chromosome has been seen in every other genetic analysis of female hydrocarbon differences in the D. melanogaster group. We suggest that the high 7,11-HD phenotype seen in two species evolved twice independently from ancestors having the high 7-T phenotype, and that the recurrent third-chromosome effects are evolutionary convergences that may be due to a concentration of ``hydrocarbon genes'' on that chromosome.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bier E., Vaessin H., Shepherd S., Lee K., McCall K., Barbel S., Ackerman L., Carretto R., Uemura T., Grell E. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989 Sep;3(9):1273–1287. doi: 10.1101/gad.3.9.1273. [DOI] [PubMed] [Google Scholar]
  2. Braverman J. M., Goñi B., Orr H. A. Loss of a paternal chromosome causes developmental anomalies among Drosophila hybrids. Heredity (Edinb) 1992 Nov;69(Pt 5):416–422. doi: 10.1038/hdy.1992.145. [DOI] [PubMed] [Google Scholar]
  3. Bryant P. J., Zornetzer M. Mosaic analysis of lethal mutations in Drosophila. Genetics. 1973 Dec;75(4):623–637. doi: 10.1093/genetics/75.4.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cariou M. L., Solignac M., Monnerot M., David J. R. Low allozyme and mtDNA variability in the island endemic species Drosophila sechellia (D. melanogaster complex). Experientia. 1990 Jan 15;46(1):101–104. doi: 10.1007/BF01955430. [DOI] [PubMed] [Google Scholar]
  5. Coyne J. A., Crittenden A. P., Mah K. Genetics of a pheromonal difference contributing to reproductive isolation in Drosophila. Science. 1994 Sep 2;265(5177):1461–1464. doi: 10.1126/science.8073292. [DOI] [PubMed] [Google Scholar]
  6. Coyne J. A. Genetics and speciation. Nature. 1992 Feb 6;355(6360):511–515. doi: 10.1038/355511a0. [DOI] [PubMed] [Google Scholar]
  7. Coyne J. A. Genetics of a difference in male cuticular hydrocarbons between two sibling species, Drosophila simulans and D. sechellia. Genetics. 1996 Aug;143(4):1689–1698. doi: 10.1093/genetics/143.4.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coyne J. A., Oyama R. Localization of pheromonal sexual dimorphism in Drosophila melanogaster and its effect on sexual isolation. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9505–9509. doi: 10.1073/pnas.92.21.9505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferveur J. F. Genetic control of pheromones in Drosophila simulans. I. Ngbo, a locus on the second chromosome. Genetics. 1991 Jun;128(2):293–301. doi: 10.1093/genetics/128.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foss E., Lande R., Stahl F. W., Steinberg C. M. Chiasma interference as a function of genetic distance. Genetics. 1993 Mar;133(3):681–691. doi: 10.1093/genetics/133.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gatti M., Baker B. S. Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes Dev. 1989 Apr;3(4):438–453. doi: 10.1101/gad.3.4.438. [DOI] [PubMed] [Google Scholar]
  12. Gelbart W. M. A new mutant controlling mitotic chromosome disjunction in Drosophila melanogaster. Genetics. 1974 Jan;76(1):51–63. doi: 10.1093/genetics/76.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hutter P., Roote J., Ashburner M. A genetic basis for the inviability of hybrids between sibling species of Drosophila. Genetics. 1990 Apr;124(4):909–920. doi: 10.1093/genetics/124.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwasa Y., Pomiankowski A. Continual change in mate preferences. Nature. 1995 Oct 5;377(6548):420–422. doi: 10.1038/377420a0. [DOI] [PubMed] [Google Scholar]
  15. KIMURA M. On the probability of fixation of mutant genes in a population. Genetics. 1962 Jun;47:713–719. doi: 10.1093/genetics/47.6.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kliman R. M., Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. doi: 10.1093/genetics/133.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lande R. The minimum number of genes contributing to quantitative variation between and within populations. Genetics. 1981 Nov-Dec;99(3-4):541–553. doi: 10.1093/genetics/99.3-4.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ripoll P. Behavior of somatic cells homozygous for zygotic lethals in Drosophila melanogaster. Genetics. 1977 Jun;86(2 Pt 1):357–376. [PMC free article] [PubMed] [Google Scholar]
  19. Sawamura K., Watanabe T. K., Yamamoto M. T. Hybrid lethal systems in the Drosophila melanogaster species complex. Genetica. 1993;88(2-3):175–185. doi: 10.1007/BF02424474. [DOI] [PubMed] [Google Scholar]
  20. Stahl F. W., Lande R. Estimating interference and linkage map distance from two-factor tetrad data. Genetics. 1995 Mar;139(3):1449–1454. doi: 10.1093/genetics/139.3.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sturtevant A H. Genetic Studies on DROSOPHILA SIMULANS. I. Introduction. Hybrids with DROSOPHILA MELANOGASTER. Genetics. 1920 Sep;5(5):488–500. doi: 10.1093/genetics/5.5.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. True J. R., Weir B. S., Laurie C. C. A genome-wide survey of hybrid incompatibility factors by the introgression of marked segments of Drosophila mauritiana chromosomes into Drosophila simulans. Genetics. 1996 Mar;142(3):819–837. doi: 10.1093/genetics/142.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zeng Z. B., Houle D., Cockerham C. C. How informative is Wright's estimator of the number of genes affecting a quantitative character? Genetics. 1990 Sep;126(1):235–247. doi: 10.1093/genetics/126.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES