Abstract
The t-haplotype is a chromosomal region in Mus musculus characterized by meiotic drive such that heterozygous males transmit t-bearing chromosomes to roughly 90% of their offspring. Most naturally occurring t-haplotypes express a recessive embryonic lethality, preventing fixation of the t-haplotype. Surprisingly, the t-haplotype occurs in nature as a persistent, low-frequency polymorphism. Early modeling studies led LEWONTIN to hypothesize that this low level polymorphism results from a balance between genetic drift in small demes and interdemic migration. Here, we show that while combinations of deme size and migration rate that predict natural t-haplotype frequencies exist, the range of such values is too narrow to be biologically plausible, suggesting that small deme size and interdemic migration alone do not explain the observed t-haplotype frequencies. In response, we tested other factors that might explain the observed t-polymorphism. Two led to biologically plausible models: substantially reduced heterozygous fitness and reduced meiotic drive. This raises the question whether these phenomena occur in nature. Our data suggest an alternative explanation: there is no stable, low-level t-polymorphism. Rather wild populations are in one of two stable states characterized by extinction of the t-haplotype and a high t-haplotype frequency, respectively, or in transition between the two.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSON P. K. LETHAL ALLELES IN MUS MUSCULUS: LOCAL DISTRIBUTION AND EVIDENCE FOR ISOLATION OF DEMES. Science. 1964 Jul 10;145(3628):177–178. doi: 10.1126/science.145.3628.177. [DOI] [PubMed] [Google Scholar]
- Ardlie K. G., Silver L. M. Low frequency of mouse t haplotypes in wild populations is not explained by modifiers of meiotic drive. Genetics. 1996 Dec;144(4):1787–1797. doi: 10.1093/genetics/144.4.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruck D. MALE SEGREGATION RATIO ADVANTAGE AS A FACTOR IN MAINTAINING LETHAL ALLELES IN WILD POPULATIONS OF HOUSE MICE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):152–158. doi: 10.1073/pnas.43.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Hartl D. L. Population Dynamics of the Segregation Distorter Polymorphism of DROSOPHILA MELANOGASTER. Genetics. 1978 May;89(1):171–192. doi: 10.1093/genetics/89.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994 Sep 15;371(6494):215–220. doi: 10.1038/371215a0. [DOI] [PubMed] [Google Scholar]
- Crow J. F. The ultraselfish gene. Genetics. 1988 Mar;118(3):389–391. doi: 10.1093/genetics/118.3.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn L. C. EVIDENCE OF EVOLUTIONARY FORCES LEADING TO THE SPREAD OF LETHAL GENES IN WILD POPULATIONS OF HOUSE MICE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):158–163. doi: 10.1073/pnas.43.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Figueroa F., Golubić M., Nizetić D., Klein J. Evolution of mouse major histocompatibility complex genes borne by t chromosomes. Proc Natl Acad Sci U S A. 1985 May;82(9):2819–2823. doi: 10.1073/pnas.82.9.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lenington S., Egid K., Williams J. Analysis of a genetic recognition system in wild house mice. Behav Genet. 1988 Jul;18(4):549–564. doi: 10.1007/BF01065521. [DOI] [PubMed] [Google Scholar]
- Levin S. A., Durrett R. From individuals to epidemics. Philos Trans R Soc Lond B Biol Sci. 1996 Nov 29;351(1347):1615–1621. doi: 10.1098/rstb.1996.0145. [DOI] [PubMed] [Google Scholar]
- Lewontin R C, Dunn L C. The Evolutionary Dynamics of a Polymorphism in the House Mouse. Genetics. 1960 Jun;45(6):705–722. doi: 10.1093/genetics/45.6.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning C. J., Wakeland E. K., Potts W. K. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature. 1992 Dec 10;360(6404):581–583. doi: 10.1038/360581a0. [DOI] [PubMed] [Google Scholar]
- Padieu E., Bernet J. Mode d'action des gènes responsables de l'avortement de certains produits de la méisoe chez l'Ascomycète Podospora anserina. C R Acad Sci Hebd Seances Acad Sci D. 1967 May 8;264(19):2300–2303. [PubMed] [Google Scholar]
- Petras M. L., Topping J. C. The maintenance of polymorphisms at two loci in house mouse (Mus musculus) populations. Can J Genet Cytol. 1983 Apr;25(2):190–201. doi: 10.1139/g83-032. [DOI] [PubMed] [Google Scholar]
- Rick C. M. The tomato ge locus: linkage relations and geographic distribution of alleles. Genetics. 1971 Jan;67(1):75–85. doi: 10.1093/genetics/67.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruvinsky A., Polyakov A., Agulnik A., Tichy H., Figueroa F., Klein J. Low diversity of t haplotypes in the eastern form of the house mouse, Mus musculus L. Genetics. 1991 Jan;127(1):161–168. doi: 10.1093/genetics/127.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner B. C., Perkins D. D. Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics. 1979 Nov;93(3):587–606. doi: 10.1093/genetics/93.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]