Skip to main content
Genetics logoLink to Genetics
. 1997 Apr;145(4):945–959. doi: 10.1093/genetics/145.4.945

Competition between Different Variegating Rearrangements for Limited Heterochromatic Factors in Drosophila Melanogaster

V K Lloyd 1, D A Sinclair 1, T A Grigliatti 1
PMCID: PMC1207899  PMID: 9093849

Abstract

Position effect variegation (PEV) results from the juxtaposition of a euchromatic gene to heterochromatin. In its new position the gene is inactivated in some cells and not in others. This mosaic expression is consistent with variability in the spread of heterochromatin from cell to cell. As many components of heterochromatin are likely to be produced in limited amounts, the spread of heterochromatin into a normally euchromatic region should be accompanied by a concomitant loss or redistribution of the protein components from other heterochromatic regions. We have shown that this is the case by simultaneously monitoring variegation of a euchromatic and a heterochromatic gene associated with a single chromosome rearrangement. Secondly, if several heterochromatic regions of the genome share limited components of heterochromatin, then some variegating rearrangements should compete for these components. We have examined this hypothesis by testing flies with combinations of two or more different variegating rearrangements. Of the nine combinations of pairs of variegating rearrangements we studied, seven showed nonreciprocal interactions. These results imply that many components of heterochromatin are both shared and present in limited amounts and that they can transfer between chromosomal sites. Consequently, even nonvariegation portions of the genome will be disrupted by re-allocation of heterochromatic proteins associated with PEV. These results have implications for models of PEV.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananiev E. V., Gvozdev V. A. Changed pattern of transcription and replication in polytene chromosomes of Drosophila melanogaster resulting from eu-heterochromatin rearrangement. Chromosoma. 1974 Mar 14;45(2):173–191. doi: 10.1007/BF00362310. [DOI] [PubMed] [Google Scholar]
  2. Bahn E. Position-effect variegation for an isoamylase in Drosophila melanogaster. Hereditas. 1972;67(1):79–82. doi: 10.1111/j.1601-5223.1971.tb02361.x. [DOI] [PubMed] [Google Scholar]
  3. Baker W. K. Position-effect variegation. Adv Genet. 1968;14:133–169. [PubMed] [Google Scholar]
  4. Belyaeva E. S., Demakova O. V., Umbetova G. H., Zhimulev I. F. Cytogenetic and molecular aspects of position-effect variegation in Drosophila melanogaster. V. Heterochromatin-associated protein HP1 appears in euchromatic chromosomal regions that are inactivated as a result of position-effect variegation. Chromosoma. 1993 Sep;102(8):583–590. doi: 10.1007/BF00368351. [DOI] [PubMed] [Google Scholar]
  5. Bishop C. P. Evidence for intrinsic differences in the formation of chromatin domains in Drosophila melanogaster. Genetics. 1992 Dec;132(4):1063–1069. doi: 10.1093/genetics/132.4.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bonaccorsi S., Lohe A. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: relationships between satellite sequences and fertility factors. Genetics. 1991 Sep;129(1):177–189. doi: 10.1093/genetics/129.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper K W. Phenotypic Effects of Y Chromosome Hyperploidy in Drosophila Melanogaster, and Their Relation to Variegation. Genetics. 1956 Mar;41(2):242–264. doi: 10.1093/genetics/41.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cowell J. K., Hartmann-Goldstein I. J. Modification of the DNA content in translocated regions of Drosophila polytene chromosomes. Chromosoma. 1980;81(1):55–64. doi: 10.1007/BF00292422. [DOI] [PubMed] [Google Scholar]
  9. Csink A. K., Henikoff S. Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature. 1996 Jun 6;381(6582):529–531. doi: 10.1038/381529a0. [DOI] [PubMed] [Google Scholar]
  10. Csink A. K., Linsk R., Birchler J. A. The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics. 1994 Sep;138(1):153–163. doi: 10.1093/genetics/138.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dimitri P., Pisano C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics. 1989 Aug;122(4):793–800. doi: 10.1093/genetics/122.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dorer D. R., Henikoff S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell. 1994 Jul 1;77(7):993–1002. doi: 10.1016/0092-8674(94)90439-1. [DOI] [PubMed] [Google Scholar]
  13. Dorn R., Krauss V., Reuter G., Saumweber H. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11376–11380. doi: 10.1073/pnas.90.23.11376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Eissenberg J. C., James T. C., Foster-Hartnett D. M., Hartnett T., Ngan V., Elgin S. C. Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923–9927. doi: 10.1073/pnas.87.24.9923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frankham R. Molecular hypotheses for position-effect variegation: anti-sense transcription and promoter occlusion. J Theor Biol. 1988 Nov 8;135(1):85–107. doi: 10.1016/s0022-5193(88)80176-0. [DOI] [PubMed] [Google Scholar]
  16. Garzino V., Pereira A., Laurenti P., Graba Y., Levis R. W., Le Parco Y., Pradel J. Cell lineage-specific expression of modulo, a dose-dependent modifier of variegation in Drosophila. EMBO J. 1992 Dec;11(12):4471–4479. doi: 10.1002/j.1460-2075.1992.tb05548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartmann-Goldstein I. J. On the relationship between heterochromatization and variegation in Drosophila, with special reference to temperature-sensitive periods. Genet Res. 1967 Oct;10(2):143–159. doi: 10.1017/s0016672300010880. [DOI] [PubMed] [Google Scholar]
  18. Hartmann-Goldstein I. J., Wargent J. M. Cytological observations on the interaction between two inversions responsible for position-effect variegation in Drosophila melanogaster. Chromosoma. 1975 Nov 11;52(4):349–362. doi: 10.1007/BF00364019. [DOI] [PubMed] [Google Scholar]
  19. Hayashi S., Ruddell A., Sinclair D., Grigliatti T. Chromosomal structure is altered by mutations that suppress or enhance position effect variegation. Chromosoma. 1990 Oct;99(6):391–400. doi: 10.1007/BF01726690. [DOI] [PubMed] [Google Scholar]
  20. Henikoff S. Position Effects and Variegation Enhancers in an Autosomal Region of DROSOPHILA MELANOGASTER. Genetics. 1979 Sep;93(1):105–115. doi: 10.1093/genetics/93.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hinton T. A Correlation of Phenotypic Changes and Chromosomal Rearrangements at the Two Ends of an Inversion. Genetics. 1950 Mar;35(2):188–205. doi: 10.1093/genetics/35.2.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howe M., Dimitri P., Berloco M., Wakimoto B. T. Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. Genetics. 1995 Jul;140(3):1033–1045. doi: 10.1093/genetics/140.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. James T. C., Elgin S. C. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986 Nov;6(11):3862–3872. doi: 10.1128/mcb.6.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Judd B H. Direct Proof of a Variegated-Type Position Effect at the White Locus in Drosophila Melanogaster. Genetics. 1955 Sep;40(5):739–744. doi: 10.1093/genetics/40.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kaufmann B P. Reversion from Roughest to Wild Type in Drosophila Melanogaster. Genetics. 1942 Sep;27(5):537–549. doi: 10.1093/genetics/27.5.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Khesin R. B., Leibovitch B. A. Influence of deficiency of the histone gene-containing 38B-40 region on X-chromosome template activity and the white gene position effect variegation in Drosophila melanogaster. Mol Gen Genet. 1978 Jul 4;162(3):323–328. doi: 10.1007/BF00268858. [DOI] [PubMed] [Google Scholar]
  27. Kornher J. S., Kauffman S. A. Variegated expression of the Sgs-4 locus in Drosophila melanogaster. Chromosoma. 1986;94(3):205–216. doi: 10.1007/BF00288495. [DOI] [PubMed] [Google Scholar]
  28. LEWIS E. B. The phenomenon of position effect. Adv Genet. 1950;3:73–115. doi: 10.1016/s0065-2660(08)60083-8. [DOI] [PubMed] [Google Scholar]
  29. Levis R., Hazelrigg T., Rubin G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. doi: 10.1126/science.2992080. [DOI] [PubMed] [Google Scholar]
  30. Locke J., Kotarski M. A., Tartof K. D. Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. Genetics. 1988 Sep;120(1):181–198. doi: 10.1093/genetics/120.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lohe A. R., Hilliker A. J., Roberts P. A. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics. 1993 Aug;134(4):1149–1174. doi: 10.1093/genetics/134.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moore G. D., Sinclair D. A., Grigliatti T. A. Histone Gene Multiplicity and Position Effect Variegation in DROSOPHILA MELANOGASTER. Genetics. 1983 Oct;105(2):327–344. doi: 10.1093/genetics/105.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nix C. E. Suppression of transcription of the ribosomal RNA cistrons of Drosophila melanogaster in a structurally rearranged chromosome. Biochem Genet. 1973 Sep;10(1):1–12. doi: 10.1007/BF00485743. [DOI] [PubMed] [Google Scholar]
  34. Pokholkova G. V., Makunin I. V., Belyaeva E. S., Zhimulev I. F. Observations on the induction of position effect variegation of euchromatic genes in Drosophila melanogaster. Genetics. 1993 May;134(1):231–242. doi: 10.1093/genetics/134.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reuter G., Dorn R., Hoffmann H. J. Butyrate sensitive suppressor of position-effect variegation mutations in Drosophila melanogaster. Mol Gen Genet. 1982;188(3):480–485. doi: 10.1007/BF00330052. [DOI] [PubMed] [Google Scholar]
  36. Reuter G., Werner W., Hoffmann H. J. Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma. 1982;85(4):539–551. doi: 10.1007/BF00327349. [DOI] [PubMed] [Google Scholar]
  37. Reuter G., Wolff I. Isolation of dominant suppressor mutations for position-effect variegation in Drosophila melanogaster. Mol Gen Genet. 1981;182(3):516–519. doi: 10.1007/BF00293947. [DOI] [PubMed] [Google Scholar]
  38. Rushlow C. A., Bender W., Chovnick A. Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics. 1984 Nov;108(3):603–615. doi: 10.1093/genetics/108.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sinclair D. A., Lloyd V. K., Grigliatti T. A. Characterization of mutations that enhance position-effect variegation in Drosophila melanogaster. Mol Gen Genet. 1989 Apr;216(2-3):328–333. doi: 10.1007/BF00334372. [DOI] [PubMed] [Google Scholar]
  40. Talbert P. B., LeCiel C. D., Henikoff S. Modification of the Drosophila heterochromatic mutation brownDominant by linkage alterations. Genetics. 1994 Feb;136(2):559–571. doi: 10.1093/genetics/136.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tartof K. D., Hobbs C., Jones M. A structural basis for variegating position effects. Cell. 1984 Jul;37(3):869–878. doi: 10.1016/0092-8674(84)90422-7. [DOI] [PubMed] [Google Scholar]
  42. Wakimoto B. T., Hearn M. G. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics. 1990 May;125(1):141–154. doi: 10.1093/genetics/125.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wargent J. M., Hartmann-Goldstein I. J. Phenotypic observations on modification of position-effect variegation in Drosophila melanogaster. Heredity (Edinb) 1974 Dec;33(3):317–326. doi: 10.1038/hdy.1974.98. [DOI] [PubMed] [Google Scholar]
  44. Wustmann G., Szidonya J., Taubert H., Reuter G. The genetics of position-effect variegation modifying loci in Drosophila melanogaster. Mol Gen Genet. 1989 Jun;217(2-3):520–527. doi: 10.1007/BF02464926. [DOI] [PubMed] [Google Scholar]
  45. Zuckerkandl E. A possible role of "inert" heterochromatin in cell differentiation. Action of and competition for "locking" molecules. Biochimie. 1974;56(6-7):937–954. doi: 10.1016/s0300-9084(74)80516-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES