Skip to main content
Genetics logoLink to Genetics
. 1997 Apr;145(4):989–1002. doi: 10.1093/genetics/145.4.989

Lack of Degeneration of Loci on the Neo-Y Chromosome of Drosophila Americana Americana

B Charlesworth 1, D Charlesworth 1, J Hnilicka 1, A Yu 1, D S Guttman 1
PMCID: PMC1207902  PMID: 9093852

Abstract

The extent of genetic degeneration of the neo-Y chromosome of Drosophila americana americana has been investigated. Three loci, coding for the enzymes enolase, phosphoglycerate kinase and alcohol dehydrogenase, have been localized to chromosome 4 of D. a. americana, which forms the neo-Y and neo-X chromosomes. Crosses between D. a. americana and D. virilis or D. montana showed that the loci coding for these enzymes carry active alleles on the neo-Y chromosome in all wild-derived strains of americana that were tested. Intercrosses between a genetically marked stock of virilis and strains of americana were carried out, creating F(3) males that were homozygous for sections of the neo-Y chromosome. The sex ratios in the F(3) generation of the intercrosses showed that no lethal alleles have accumulated on any of the neo-Y chromosomes tested. There was evidence for more minor reductions in fitness, but this seems to be mainly caused by deleterious alleles that are specific to each strain. A similar picture was provided by examination of the segregation ratios of two marker genes among the F(3) progeny. Overall, the data suggest that the neo-Y chromosome has undergone very little degeneration, certainly not to the extent of having lost the functions of vital genes. This is consistent with the recent origin of the neo-Y and neo-X chromosomes, and the slow rates at which the forces that cause Y chromosome degeneration are likely to work.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bone J. R., Kuroda M. I. Dosage compensation regulatory proteins and the evolution of sex chromosomes in Drosophila. Genetics. 1996 Oct;144(2):705–713. doi: 10.1093/genetics/144.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charlesworth B. Model for evolution of Y chromosomes and dosage compensation. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5618–5622. doi: 10.1073/pnas.75.11.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Charlesworth B. The evolution of chromosomal sex determination and dosage compensation. Curr Biol. 1996 Feb 1;6(2):149–162. doi: 10.1016/s0960-9822(02)00448-7. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. The evolution of sex chromosomes. Science. 1991 Mar 1;251(4997):1030–1033. doi: 10.1126/science.1998119. [DOI] [PubMed] [Google Scholar]
  6. Coyne J. A. Do males of Drosophila littoralis have free recombination? Hereditas. 1988;109(2):281–283. doi: 10.1111/j.1601-5223.1988.tb00366.x. [DOI] [PubMed] [Google Scholar]
  7. Graves J. A. The origin and function of the mammalian Y chromosome and Y-borne genes--an evolving understanding. Bioessays. 1995 Apr;17(4):311–320. doi: 10.1002/bies.950170407. [DOI] [PubMed] [Google Scholar]
  8. Hilton H., Hey J. DNA sequence variation at the period locus reveals the history of species and speciation events in the Drosophila virilis group. Genetics. 1996 Nov;144(3):1015–1025. doi: 10.1093/genetics/144.3.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  10. Krishnan R., Swanson K. D., Ganguly R. Dosage compensation of a retina-specific gene in Drosophila miranda. Chromosoma. 1991 Feb;100(2):125–133. doi: 10.1007/BF00418246. [DOI] [PubMed] [Google Scholar]
  11. LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
  12. Lumme J., Lankinen P. Comments to Jerry A. Coyne: Do males of Drosophila littoralis have free recombination? Hereditas. 1988;109(2):283–283. doi: 10.1111/j.1601-5223.1988.tb00367.x. [DOI] [PubMed] [Google Scholar]
  13. Marín I., Franke A., Bashaw G. J., Baker B. S. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature. 1996 Sep 12;383(6596):160–163. doi: 10.1038/383160a0. [DOI] [PubMed] [Google Scholar]
  14. Norman R. A., Doane W. W. Dosage compensation and dietary glucose repression of larval amylase activity in Drosophila miranda. Biochem Genet. 1990 Dec;28(11-12):601–613. doi: 10.1007/BF00553953. [DOI] [PubMed] [Google Scholar]
  15. Nurminsky D. I., Moriyama E. N., Lozovskaya E. R., Hartl D. L. Molecular phylogeny and genome evolution in the Drosophila virilis species group: duplications of the alcohol dehydrogenase gene. Mol Biol Evol. 1996 Jan;13(1):132–149. doi: 10.1093/oxfordjournals.molbev.a025551. [DOI] [PubMed] [Google Scholar]
  16. Orr H. A., Coyne J. A. The genetics of postzygotic isolation in the Drosophila virilis group. Genetics. 1989 Mar;121(3):527–537. doi: 10.1093/genetics/121.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rice W. R. Degeneration of a nonrecombining chromosome. Science. 1994 Jan 14;263(5144):230–232. doi: 10.1126/science.8284674. [DOI] [PubMed] [Google Scholar]
  18. Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Russo C. A., Takezaki N., Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. doi: 10.1093/oxfordjournals.molbev.a040214. [DOI] [PubMed] [Google Scholar]
  20. Simmons M. J., Crow J. F. Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977;11:49–78. doi: 10.1146/annurev.ge.11.120177.000405. [DOI] [PubMed] [Google Scholar]
  21. Sniegowski P. D., Charlesworth B. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics. 1994 Jul;137(3):815–827. doi: 10.1093/genetics/137.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sperlich D., Feuerbach-Mravlag H., Lange P., Michaelidis A., Pentzos-Daponte A. Genetic Load and Viability Distribution in Central and Marginal Populations of DROSOPHILA SUBOBSCURA. Genetics. 1977 Aug;86(4):835–848. doi: 10.1093/genetics/86.4.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stalker H. D. CHROMOSOME HOMOLOGIES IN TWO SUB-SPECIES OF DROSOPHILA VIRILIS. Proc Natl Acad Sci U S A. 1940 Sep 15;26(9):575–578. doi: 10.1073/pnas.26.9.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steinemann M., Steinemann S., Lottspeich F. How Y chromosomes become genetically inert. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5737–5741. doi: 10.1073/pnas.90.12.5737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stephan W. An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data. Mol Biol Evol. 1995 Sep;12(5):959–962. doi: 10.1093/oxfordjournals.molbev.a040274. [DOI] [PubMed] [Google Scholar]
  26. Strobel E., Pelling C., Arnheim N. Incomplete dosage compensation in an evolving Drosophila sex chromosome. Proc Natl Acad Sci U S A. 1978 Feb;75(2):931–935. doi: 10.1073/pnas.75.2.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tominaga H., Narise S. Sequence evolution of the Gpdh gene in the Drosophila virilis species group. Genetica. 1995;96(3):293–302. doi: 10.1007/BF01439583. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES