Skip to main content
Genetics logoLink to Genetics
. 1997 May;146(1):253–262. doi: 10.1093/genetics/146.1.253

Heterochromatic Stellate Gene Cluster in Drosophila Melanogaster: Structure and Molecular Evolution

A V Tulin 1, G L Kogan 1, D Filipp 1, M D Balakireva 1, V A Gvozdev 1
PMCID: PMC1207940  PMID: 9136015

Abstract

The 30-kb cluster comprising close to 20 copies of tandemly repeated Stellate genes was localized in the distal heterochromatin of the X chromosome. Of 10 sequenced genes, nine contain undamaged open reading frames with extensive similarity to protein kinase CK2 β-subunit; one gene is interrupted by an insertion. The heterochromatic array of Stellate repeats is divided into three regions by a 4.5-kb DNA segment of unknown origin and a retrotransposon insertion: the A region (~14 Stellate genes), the adjacent B region (approximately three Stellate genes), and the C region (about four Stellate genes). The sequencing of Stellate copies located along the discontinuous cluster revealed a complex pattern of diversification. The lowest level of divergence was detected in nearby Stellate repeats. The marginal copies of the A region, truncated or interrupted by an insertion, escaped homogenization and demonstrated high levels of divergence. Comparison of copies in the B and C regions, which are separated by a retrotransposon insertion, revealed a high level of diversification. These observations suggest that homogenization takes place in the Stellate cluster, but that inserted sequences may impede this process.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balakireva M. D., Shevelyov YuYa, Nurminsky D. I., Livak K. J., Gvozdev V. A. Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucleic Acids Res. 1992 Jul 25;20(14):3731–3736. doi: 10.1093/nar/20.14.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
  3. COOPER K. W. Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of "heterochromatin". Chromosoma. 1959;10:535–588. doi: 10.1007/BF00396588. [DOI] [PubMed] [Google Scholar]
  4. Dover G. A., Tautz D. Conservation and divergence in multigene families: alternatives to selection and drift. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):275–289. doi: 10.1098/rstb.1986.0007. [DOI] [PubMed] [Google Scholar]
  5. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  6. Endow S. A., Atwood K. C. Magnification: gene amplification by an inducible system of sister chromatid exchange. Trends Genet. 1988 Dec;4(12):348–351. doi: 10.1016/0168-9525(88)90055-8. [DOI] [PubMed] [Google Scholar]
  7. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  9. Jeffreys A. J., Tamaki K., MacLeod A., Monckton D. G., Neil D. L., Armour J. A. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet. 1994 Feb;6(2):136–145. doi: 10.1038/ng0294-136. [DOI] [PubMed] [Google Scholar]
  10. Linares A. R., Bowen T., Dover G. A. Aspects of nonrandom turnover involved in the concerted evolution of intergenic spacers within the ribosomal DNA of Drosophila melanogaster. J Mol Evol. 1994 Aug;39(2):151–159. doi: 10.1007/BF00163804. [DOI] [PubMed] [Google Scholar]
  11. Livak K. J. Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. Genetics. 1984 Aug;107(4):611–634. doi: 10.1093/genetics/107.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Moriyama E. N., Hartl D. L. Codon usage bias and base composition of nuclear genes in Drosophila. Genetics. 1993 Jul;134(3):847–858. doi: 10.1093/genetics/134.3.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nurminsky D. I., Shevelyov YYa, Nuzhdin S. V., Gvozdev V. A. Structure, molecular evolution and maintenance of copy number of extended repeated structures in the X-heterochromatin of Drosophila melanogaster. Chromosoma. 1994 Jul;103(4):277–285. doi: 10.1007/BF00352252. [DOI] [PubMed] [Google Scholar]
  14. Palumbo G., Bonaccorsi S., Robbins L. G., Pimpinelli S. Genetic analysis of Stellate elements of Drosophila melanogaster. Genetics. 1994 Dec;138(4):1181–1197. doi: 10.1093/genetics/138.4.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schlötterer C., Tautz D. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol. 1994 Sep 1;4(9):777–783. doi: 10.1016/s0960-9822(00)00175-5. [DOI] [PubMed] [Google Scholar]
  16. Shevelyov Y. Y. Copies of a Stellate gene variant are located in the X heterochromatin of Drosophila melanogaster and are probably expressed. Genetics. 1992 Dec;132(4):1033–1037. doi: 10.1093/genetics/132.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stephens J. C. Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. Mol Biol Evol. 1985 Nov;2(6):539–556. doi: 10.1093/oxfordjournals.molbev.a040371. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES