Abstract
We investigated the relationships between allozyme genotypes at nine polymorphic loci and survival in a natural population of the bivalve Spisula ovalis sampled on three occasions (1993, 1994, and 1995) in three different sites (2855 individuals analyzed). This species displays annual growth lines allowing identification of annual cohorts. Therefore we could avoid cohort mixing, a frequent bias in such studies, and evaluate the consistency of the observed effects across cohorts and sites. Significant viability differences were observed both among alleles and between heterozygotes and homozygotes at some loci. Multiple-locus heterozygosity was positively correlated with viability in the 1993-1994 period, but not in the 1994-1995 interval. The observed selective effects were significantly dependent on the cohort and the site considered. A bibliographic survey suggests that such variability is a common feature of studies analyzing heterozygosity-survival relationships. Two explanations are consistent with our results. First, allozyme genotypes may have direct effects on viability that interact with subtle environmental variation in a complex and unpredictable way. Second, allozyme genotypes may be transiently associated with other viability genes responsible for heterotic effects. In any case, the results militate against allozyme loci being themselves consistently overdominant for viability in natural populations.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- David P., Delay B., Berthou P., Jarne P. Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genetics. 1995 Apr;139(4):1719–1726. doi: 10.1093/genetics/139.4.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jorde P. E., Ryman N. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics. 1996 Jul;143(3):1369–1381. doi: 10.1093/genetics/143.3.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C. Twenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics. 1991 Aug;128(4):657–662. doi: 10.1093/genetics/128.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lynch M. The consequences of fluctuating selection for isozyme polymorphisms in Daphnia. Genetics. 1987 Apr;115(4):657–669. doi: 10.1093/genetics/115.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muki T., Watanabe T. K., Yamaguchi O. The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population. Genetics. 1974 Aug;77(4):771–793. doi: 10.1093/genetics/77.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pogson G. H., Zouros E. Allozyme and RFLP heterozygosities as correlates of growth rate in the scallop Placopecten magellanicus: a test of the associative overdominance hypothesis. Genetics. 1994 May;137(1):221–231. doi: 10.1093/genetics/137.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt W. B. Adaptation at Specific Loci. II. Demographic and Biochemical Elements in the Maintenance of the Colias Pgi Polymorphism. Genetics. 1983 Apr;103(4):691–724. doi: 10.1093/genetics/103.4.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt W. B. Adaptation at specific loci. I. Natural selection on phosphoglucose isomerase of Colias butterflies: Biochemical and population aspects. Genetics. 1977 Sep;87(1):177–194. doi: 10.1093/genetics/87.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watt W. B., Cassin R. C., Swan M. S. Adaptation at Specific Loci. III. Field Behavior and Survivorship Differences among Colias Pgi Genotypes Are Predictable from IN VITRO Biochemistry. Genetics. 1983 Apr;103(4):725–739. doi: 10.1093/genetics/103.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]