Skip to main content
Genetics logoLink to Genetics
. 1997 May;146(1):345–353. doi: 10.1093/genetics/146.1.345

Embryonic Expression and Evolution of Duplicated E-Protein Genes in Xenopus Laevis: Parallels with Ancestral E-Protein Genes

D H Shain 1, T Neuman 1, M X Zuber 1
PMCID: PMC1207949  PMID: 9136023

Abstract

E-proteins comprise a subfamily of helix-loop-helix transcription factors that have been identified in arthropods and several chordate taxa. In mammals, there are three classes of E-protein genes (E2A, E2-2, and HEB) that encode related, and often interchangeable, gene products. We have determined that the clawed frog Xenopus laevis contains twice the number of transcriptionally active E-protein genes when compared with other vertebrate species. Based upon genomic Southern blots and nucleotide sequence comparisons, it is likely that the additional X. laevis genes arose from tetraploidization. During embryogenesis, XE2A (homologue of mammalian E2A) transcripts were broadly expressed in anterior and posterior regions of the embryo while homologues of E2-2 (XE2.2) and HEB (XE1.2) appeared in vertebrate-specific structures including the pineal gland, olfactory bulb, and brachial arches. A phylogenetic analysis of these genes and other known metazoan E-proteins suggests that there were two periods of marked E-protein gene expansion; one that predated the radiation of vertebrates, and the other that coincided with Xenopus tetraploidization. Both of these periods were characterized by the rapid evolution of E2-2 and HEB-class genes, but not of E2A. We propose that the former genes acquired new or specialized roles during early chordate evolution and also more recently in Xenopus, as reflected by the stereotypic expression patterns of these genes during X. laevis development.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronheim A., Shiran R., Rosen A., Walker M. D. Cell-specific expression of helix-loop-helix transcription factors encoded by the E2A gene. Nucleic Acids Res. 1993 Apr 11;21(7):1601–1606. doi: 10.1093/nar/21.7.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bain G., Maandag E. C., Izon D. J., Amsen D., Kruisbeek A. M., Weintraub B. C., Krop I., Schlissel M. S., Feeney A. J., van Roon M. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell. 1994 Dec 2;79(5):885–892. doi: 10.1016/0092-8674(94)90077-9. [DOI] [PubMed] [Google Scholar]
  3. Bisbee C. A., Baker M. A., Wilson A. C., Haji-Azimi I., Fischberg M. Albumin phylogeny for clawed frogs (Xenopus). Science. 1977 Feb 25;195(4280):785–787. doi: 10.1126/science.65013. [DOI] [PubMed] [Google Scholar]
  4. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  5. Ellis H. M., Spann D. R., Posakony J. W. extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. Cell. 1990 Apr 6;61(1):27–38. doi: 10.1016/0092-8674(90)90212-w. [DOI] [PubMed] [Google Scholar]
  6. Gont L. K., Steinbeisser H., Blumberg B., de Robertis E. M. Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development. 1993 Dec;119(4):991–1004. doi: 10.1242/dev.119.4.991. [DOI] [PubMed] [Google Scholar]
  7. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  8. Holland P. W., Garcia-Fernàndez J. Hox genes and chordate evolution. Dev Biol. 1996 Feb 1;173(2):382–395. doi: 10.1006/dbio.1996.0034. [DOI] [PubMed] [Google Scholar]
  9. Holland P. Homeobox genes in vertebrate evolution. Bioessays. 1992 Apr;14(4):267–273. doi: 10.1002/bies.950140412. [DOI] [PubMed] [Google Scholar]
  10. Hu J. S., Olson E. N., Kingston R. E. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 1992 Mar;12(3):1031–1042. doi: 10.1128/mcb.12.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jan Y. N., Jan L. Y. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell. 1993 Dec 3;75(5):827–830. doi: 10.1016/0092-8674(93)90525-u. [DOI] [PubMed] [Google Scholar]
  12. Jeffreys A. J., Wilson V., Wood D., Simons J. P., Kay R. M., Williams J. G. Linkage of adult alpha- and beta-globin genes in X. laevis and gene duplication by tetraploidization. Cell. 1980 Sep;21(2):555–564. doi: 10.1016/0092-8674(80)90493-6. [DOI] [PubMed] [Google Scholar]
  13. Klein E. S., Simmons D. M., Swanson L. W., Rosenfeld M. G. Tissue-specific RNA splicing generates an ankyrin-like domain that affects the dimerization and DNA-binding properties of a bHLH protein. Genes Dev. 1993 Jan;7(1):55–71. doi: 10.1101/gad.7.1.55. [DOI] [PubMed] [Google Scholar]
  14. Lee J. E., Hollenberg S. M., Snider L., Turner D. L., Lipnick N., Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science. 1995 May 12;268(5212):836–844. doi: 10.1126/science.7754368. [DOI] [PubMed] [Google Scholar]
  15. Metz R., Ziff E. The helix-loop-helix protein rE12 and the C/EBP-related factor rNFIL-6 bind to neighboring sites within the c-fos serum response element. Oncogene. 1991 Dec;6(12):2165–2178. [PubMed] [Google Scholar]
  16. Murre C., McCaw P. S., Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989 Mar 10;56(5):777–783. doi: 10.1016/0092-8674(89)90682-x. [DOI] [PubMed] [Google Scholar]
  17. Neuman T., Keen A., Knapik E., Shain D., Ross M., Nornes H. O., Zuber M. X. ME1 and GE1: basic helix-loop-helix transcription factors expressed at high levels in the developing nervous system and in morphogenetically active regions. Eur J Neurosci. 1993 Apr 1;5(4):311–318. doi: 10.1111/j.1460-9568.1993.tb00498.x. [DOI] [PubMed] [Google Scholar]
  18. Nourse J., Mellentin J. D., Galili N., Wilkinson J., Stanbridge E., Smith S. D., Cleary M. L. Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell. 1990 Feb 23;60(4):535–545. doi: 10.1016/0092-8674(90)90657-z. [DOI] [PubMed] [Google Scholar]
  19. Parkhurst S. M., Lipshitz H. D., Ish-Horowicz D. achaete-scute feminizing activities and Drosophila sex determination. Development. 1993 Feb;117(2):737–749. doi: 10.1242/dev.117.2.737. [DOI] [PubMed] [Google Scholar]
  20. Rashbass J., Taylor M. V., Gurdon J. B. The DNA-binding protein E12 co-operates with XMyoD in the activation of muscle-specific gene expression in Xenopus embryos. EMBO J. 1992 Aug;11(8):2981–2990. doi: 10.1002/j.1460-2075.1992.tb05368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roberts V. J., Steenbergen R., Murre C. Localization of E2A mRNA expression in developing and adult rat tissues. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7583–7587. doi: 10.1073/pnas.90.16.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rudnicki M. A., Schnegelsberg P. N., Stead R. H., Braun T., Arnold H. H., Jaenisch R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell. 1993 Dec 31;75(7):1351–1359. doi: 10.1016/0092-8674(93)90621-v. [DOI] [PubMed] [Google Scholar]
  23. Shain D. H., Haile D. T., Verrastro T. A., Zuber M. X. Cloning and embryonic expression of Xenopus laevis GAP-43 (XGAP-43). Brain Res. 1995 Oct 30;697(1-2):241–246. doi: 10.1016/0006-8993(95)00866-o. [DOI] [PubMed] [Google Scholar]
  24. Shain D. H., Zuber M. X. Identification of non-tissue-specific helix-loop-helix genes in Xenopus laevis. Gene. 1995 Nov 20;165(2):319–320. doi: 10.1016/0378-1119(95)00544-g. [DOI] [PubMed] [Google Scholar]
  25. Shain D. H., Zuber M. X. Sodium dodecyl sulfate (SDS)-based whole-mount in situ hybridization of Xenopus laevis embryos. J Biochem Biophys Methods. 1996 Feb 5;31(3-4):185–188. doi: 10.1016/0165-022x(95)00030-u. [DOI] [PubMed] [Google Scholar]
  26. Soosaar A., Chiaramello A., Zuber M. X., Neuman T. Expression of basic-helix-loop-helix transcription factor ME2 during brain development and in the regions of neuronal plasticity in the adult brain. Brain Res Mol Brain Res. 1994 Aug;25(1-2):176–180. doi: 10.1016/0169-328x(94)90297-6. [DOI] [PubMed] [Google Scholar]
  27. Stutz F., Spohr G. Isolation and characterization of sarcomeric actin genes expressed in Xenopus laevis embryos. J Mol Biol. 1986 Feb 5;187(3):349–361. doi: 10.1016/0022-2836(86)90438-9. [DOI] [PubMed] [Google Scholar]
  28. Suda K., Nornes H. O., Neuman T. Class A basic helix-loop-helix transcription factors in early stages of chick neural tube development: evidence for functional redundancy. Neurosci Lett. 1994 Aug 15;177(1-2):87–90. doi: 10.1016/0304-3940(94)90051-5. [DOI] [PubMed] [Google Scholar]
  29. Sun X. H., Baltimore D. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell. 1991 Jan 25;64(2):459–470. doi: 10.1016/0092-8674(91)90653-g. [DOI] [PubMed] [Google Scholar]
  30. Villares R., Cabrera C. V. The achaete-scute gene complex of D. melanogaster: conserved domains in a subset of genes required for neurogenesis and their homology to myc. Cell. 1987 Jul 31;50(3):415–424. doi: 10.1016/0092-8674(87)90495-8. [DOI] [PubMed] [Google Scholar]
  31. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
  32. Wülbeck C., Fromental-Ramain C., Campos-Ortega J. A. The HLH domain of a zebrafish HE12 homologue can partially substitute for functions of the HLH domain of Drosophila DAUGHTERLESS. Mech Dev. 1994 May;46(2):73–85. doi: 10.1016/0925-4773(94)90077-9. [DOI] [PubMed] [Google Scholar]
  33. Zhang Y., Bina M. Sequence of a HeLa cDNA provides the DNA binding domain and carboxy terminus of HE47: a human helix-loop-helix protein related to the enhancer binding factor E47. DNA Seq. 1991;2(3):197–202. doi: 10.3109/10425179109039690. [DOI] [PubMed] [Google Scholar]
  34. Zhuang Y., Kim C. G., Bartelmez S., Cheng P., Groudine M., Weintraub H. Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12132–12136. doi: 10.1073/pnas.89.24.12132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhuang Y., Soriano P., Weintraub H. The helix-loop-helix gene E2A is required for B cell formation. Cell. 1994 Dec 2;79(5):875–884. doi: 10.1016/0092-8674(94)90076-0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES