Skip to main content
Genetics logoLink to Genetics
. 1997 Jun;146(2):619–628. doi: 10.1093/genetics/146.2.619

Ras1-Mediated Modulation of Drosophila Homeotic Function in Cell and Segment Identity

M Boube 1, C Benassayag 1, L Seroude 1, D L Cribbs 1
PMCID: PMC1208002  PMID: 9178011

Abstract

Mutations of the Drosophila homeotic proboscipedia gene (pb; the Hox-A2/B2 homologue) provoke dose-sensitive defects. These were used to search for dose-sensitive dominant modifiers of pb function. Two identified interacting genes were the proto-oncogene Ras1 and its functional antagonist Gap1, prominent intermediaries in known signal transduction pathways. Ras1(+) is a positive modifier of pb activity both in normal and ectopic cell contexts, while the Ras1-antagonist Gap1 has an opposite effect. A general role for Ras1 in homeotic function is likely, since Ras1(+) activity also modulates functions of the homeotic loci Sex combs reduced and Ultrabithorax. Our data suggest that the modulation occurs by a mechanism independent of transcriptional control of the homeotic loci themselves, or of the Ras1/Gap1 genes. Taken together our data support a role for Ras1-mediated cell signaling in the homeotic control of segmental differentiation.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggs W. H., 3rd, Zavitz K. H., Dickson B., van der Straten A., Brunner D., Hafen E., Zipursky S. L. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. EMBO J. 1994 Apr 1;13(7):1628–1635. doi: 10.1002/j.1460-2075.1994.tb06426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Botas J. Control of morphogenesis and differentiation by HOM/Hox genes. Curr Opin Cell Biol. 1993 Dec;5(6):1015–1022. doi: 10.1016/0955-0674(93)90086-6. [DOI] [PubMed] [Google Scholar]
  3. Capovilla M., Brandt M., Botas J. Direct regulation of decapentaplegic by Ultrabithorax and its role in Drosophila midgut morphogenesis. Cell. 1994 Feb 11;76(3):461–475. doi: 10.1016/0092-8674(94)90111-2. [DOI] [PubMed] [Google Scholar]
  4. Dickson B. J., van der Straten A., Dominguez M., Hafen E. Mutations Modulating Raf signaling in Drosophila eye development. Genetics. 1996 Jan;142(1):163–171. doi: 10.1093/genetics/142.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garcia-Bellido A., Lewis E. B. Autonomous cellular differentiation of homoeotic bithorax mutants of Drosophila melanogaster. Dev Biol. 1976 Feb;48(2):400–410. doi: 10.1016/0012-1606(76)90101-9. [DOI] [PubMed] [Google Scholar]
  6. Gaul U., Mardon G., Rubin G. M. A putative Ras GTPase activating protein acts as a negative regulator of signaling by the Sevenless receptor tyrosine kinase. Cell. 1992 Mar 20;68(6):1007–1019. doi: 10.1016/0092-8674(92)90073-l. [DOI] [PubMed] [Google Scholar]
  7. Gehring W. J., Affolter M., Bürglin T. Homeodomain proteins. Annu Rev Biochem. 1994;63:487–526. doi: 10.1146/annurev.bi.63.070194.002415. [DOI] [PubMed] [Google Scholar]
  8. Glise B., Bourbon H., Noselli S. hemipterous encodes a novel Drosophila MAP kinase kinase, required for epithelial cell sheet movement. Cell. 1995 Nov 3;83(3):451–461. doi: 10.1016/0092-8674(95)90123-x. [DOI] [PubMed] [Google Scholar]
  9. Hou X. S., Chou T. B., Melnick M. B., Perrimon N. The torso receptor tyrosine kinase can activate Raf in a Ras-independent pathway. Cell. 1995 Apr 7;81(1):63–71. doi: 10.1016/0092-8674(95)90371-2. [DOI] [PubMed] [Google Scholar]
  10. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  11. Kaufman T. C. Cytogenetic Analysis of Chromosome 3 in DROSOPHILA MELANOGASTER: Isolation and Characterization of Four New Alleles of the Proboscipedia (pb) Locus. Genetics. 1978 Nov;90(3):579–596. doi: 10.1093/genetics/90.3.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kemphues K. J., Raff E. C., Kaufman T. C. Genetic analysis of B2t, the structural gene for a testis-specific beta-tubulin subunit in Drosophila melanogaster. Genetics. 1983 Oct;105(2):345–356. doi: 10.1093/genetics/105.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kenyon C. If birds can fly, why can't we? Homeotic genes and evolution. Cell. 1994 Jul 29;78(2):175–180. doi: 10.1016/0092-8674(94)90288-7. [DOI] [PubMed] [Google Scholar]
  14. Lawrence P. A., Morata G. Homeobox genes: their function in Drosophila segmentation and pattern formation. Cell. 1994 Jul 29;78(2):181–189. doi: 10.1016/0092-8674(94)90289-5. [DOI] [PubMed] [Google Scholar]
  15. Malicki J., Schughart K., McGinnis W. Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell. 1990 Nov 30;63(5):961–967. doi: 10.1016/0092-8674(90)90499-5. [DOI] [PubMed] [Google Scholar]
  16. McGinnis N., Kuziora M. A., McGinnis W. Human Hox-4.2 and Drosophila deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell. 1990 Nov 30;63(5):969–976. doi: 10.1016/0092-8674(90)90500-e. [DOI] [PubMed] [Google Scholar]
  17. Merrill V. K., Turner F. R., Kaufman T. C. A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev Biol. 1987 Aug;122(2):379–395. doi: 10.1016/0012-1606(87)90303-4. [DOI] [PubMed] [Google Scholar]
  18. Morata G., Botas J., Kerridge S., Struhl G. Homeotic transformations of the abdominal segments of Drosophila caused by breaking or deleting a central portion of the bithorax complex. J Embryol Exp Morphol. 1983 Dec;78:319–341. [PubMed] [Google Scholar]
  19. Neuman-Silberberg F. S., Schejter E., Hoffmann F. M., Shilo B. Z. The Drosophila ras oncogenes: structure and nucleotide sequence. Cell. 1984 Jul;37(3):1027–1033. doi: 10.1016/0092-8674(84)90437-9. [DOI] [PubMed] [Google Scholar]
  20. Pattatucci A. M., Kaufman T. C. The homeotic gene Sex combs reduced of Drosophila melanogaster is differentially regulated in the embryonic and imaginal stages of development. Genetics. 1991 Oct;129(2):443–461. doi: 10.1093/genetics/129.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pattatucci A. M., Otteson D. C., Kaufman T. C. A functional and structural analysis of the Sex combs reduced locus of Drosophila melanogaster. Genetics. 1991 Oct;129(2):423–441. doi: 10.1093/genetics/129.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pultz M. A., Diederich R. J., Cribbs D. L., Kaufman T. C. The proboscipedia locus of the Antennapedia complex: a molecular and genetic analysis. Genes Dev. 1988 Jul;2(7):901–920. doi: 10.1101/gad.2.7.901. [DOI] [PubMed] [Google Scholar]
  23. Pöpperl H., Bienz M., Studer M., Chan S. K., Aparicio S., Brenner S., Mann R. S., Krumlauf R. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell. 1995 Jun 30;81(7):1031–1042. doi: 10.1016/s0092-8674(05)80008-x. [DOI] [PubMed] [Google Scholar]
  24. Simon M. A. Signal transduction during the development of the Drosophila R7 photoreceptor. Dev Biol. 1994 Dec;166(2):431–442. doi: 10.1006/dbio.1994.1327. [DOI] [PubMed] [Google Scholar]
  25. Tsuda L., Inoue Y. H., Yoo M. A., Mizuno M., Hata M., Lim Y. M., Adachi-Yamada T., Ryo H., Masamune Y., Nishida Y. A protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell. 1993 Feb 12;72(3):407–414. doi: 10.1016/0092-8674(93)90117-9. [DOI] [PubMed] [Google Scholar]
  26. Zhao J. J., Lazzarini R. A., Pick L. The mouse Hox-1.3 gene is functionally equivalent to the Drosophila Sex combs reduced gene. Genes Dev. 1993 Mar;7(3):343–354. doi: 10.1101/gad.7.3.343. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES