Skip to main content
Genetics logoLink to Genetics
. 1997 Jun;146(2):669–679. doi: 10.1093/genetics/146.2.669

Morph-Specific Proteins in Pollen and Styles of Distylous Turnera (Turneraceae)

A Athanasiou 1, J S Shore 1
PMCID: PMC1208006  PMID: 9178015

Abstract

We used nondenaturing isoelectric focusing (IEF) in a survey of plants from 11 populations to identify style and pollen proteins unique to the short-styled morph of Turnera scabra, T. subulata and T. krapovickasii. Three protein bands [approximately isoelectric points (pIs) 6.1, 6.3 and 6.5] were found only in styles and stigmas of short-styled plants while two bands (approximately pIs 6.7 and 6.8, M(r) 56 and 59 kD) occur only in pollen of short-styled plants. Some of these bands appear very late in development, within 24 hr before flowering. Two isozyme loci were mapped to an 8.7 cM region spanning the distyly locus. Using these isozyme markers we identified progeny exhibiting recombination adjacent to the distyly locus. No recombinants between the distyly locus and the locus or loci controlling the presence of the short-styled morph-specific proteins were obtained. This suggests that the loci encoding these proteins are either extremely tightly linked to the distyly locus and in complete disequilibrium with the S allele or exhibit morph-limited expression. Crosses to a plant showing an unusual style protein phenotype demonstrated that an additional unlinked locus is required for full expression of the style proteins. The function of the morph-specific proteins is unknown.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foote H. C., Ride J. P., Franklin-Tong V. E., Walker E. A., Lawrence M. J., Franklin F. C. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2265–2269. doi: 10.1073/pnas.91.6.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. LEWIS D. Comparative incompatibility in angiosperms and fungi. Adv Genet. 1954;6:235–285. doi: 10.1016/s0065-2660(08)60131-5. [DOI] [PubMed] [Google Scholar]
  3. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  4. MARTIN F. W. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 1959 May;34(3):125–128. doi: 10.3109/10520295909114663. [DOI] [PubMed] [Google Scholar]
  5. Matton D. P., Nass N., Clarke A. E., Newbigin E. Self-incompatibility: how plants avoid illegitimate offspring. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):1992–1997. doi: 10.1073/pnas.91.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES