Skip to main content
Genetics logoLink to Genetics
. 1997 Jul;146(3):1153–1163. doi: 10.1093/genetics/146.3.1153

A Comparison of Population Differentiation across Four Classes of Gene Marker in Limber Pine (Pinus Flexilis James)

R G Latta 1, J B Mitton 1
PMCID: PMC1208043  PMID: 9215916

Abstract

We examined genetic differentiation among seven populations of limber pine using four classes of gene marker. Among-population differentiation was much higher for maternally inherited mitochondrial DNA polymorphisms than for paternally inherited chloroplast DNA, indicating that wind-dispersed pollen is the main agent of gene flow. Chloroplast DNA differentiation is consistent with gene flow estimated in a prior paternity analysis. Using the estimates of seed and pollen flow derived from mtDNA and cpDNA differentiation, we predicted the value of F(st) expected at nuclear loci. Allelic frequency differentiation at seven allozyme loci was relatively homogeneous across loci and consistent with the level of differentiation predicted from the organellar haplotypes. By contrast four of the nine randomly applied polymorphic DNA (RAPD) markers we examined were more strongly differentiated than this prediction, suggesting the action of diversifying selection. However, the differentiated RAPDs and mtDNA were concordant in dividing the populations into two groups, suggesting some historical division. Simulations show that such historical division can increase the interlocus variance in F(st), but neither a historical nor an equilibrium model could account for the joint distribution of F(st) estimates across both allozyme and RAPD loci. Thus at least one group of loci appears to be experiencing natural selection.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aagaard J. E., Vollmer S. S., Sorensen F. C., Strauss S. H. Mitochondrial DNA products among RAPD profiles are frequent and strongly differentiated between races of Douglas-fir. Mol Ecol. 1995 Aug;4(4):441–446. doi: 10.1111/j.1365-294x.1995.tb00237.x. [DOI] [PubMed] [Google Scholar]
  2. Apostol B. L., Black W. C., 4th, Reiter P., Miller B. R. Population genetics with RAPD-PCR markers: the breeding structure of Aedes aegypti in Puerto Rico. Heredity (Edinb) 1996 Apr;76(Pt 4):325–334. doi: 10.1038/hdy.1996.50. [DOI] [PubMed] [Google Scholar]
  3. Bonnin I., Prosperi J. M., Olivieri I. Genetic markers and quantitative genetic variation in Medicago truncatula (Leguminosae): a comparative analysis of population structure. Genetics. 1996 Aug;143(4):1795–1805. doi: 10.1093/genetics/143.4.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demesure B., Sodzi N., Petit R. J. A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol. 1995 Feb;4(1):129–131. doi: 10.1111/j.1365-294x.1995.tb00201.x. [DOI] [PubMed] [Google Scholar]
  5. Dong J., Wagner D. B. Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population subdivision, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics. 1994 Mar;136(3):1187–1194. doi: 10.1093/genetics/136.3.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
  7. Lynch M., Milligan B. G. Analysis of population genetic structure with RAPD markers. Mol Ecol. 1994 Apr;3(2):91–99. doi: 10.1111/j.1365-294x.1994.tb00109.x. [DOI] [PubMed] [Google Scholar]
  8. McCauley D. E. Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba: implications for studies of gene flow in plants. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8127–8131. doi: 10.1073/pnas.91.17.8127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Palmer J. D. Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 1990 Apr;6(4):115–120. doi: 10.1016/0168-9525(90)90125-p. [DOI] [PubMed] [Google Scholar]
  11. Podolsky R. H., Holtsford T. P. Population structure of morphological traits in Clarkia dudleyana. I. Comparison of FST between allozymes and morphological traits. Genetics. 1995 Jun;140(2):733–744. doi: 10.1093/genetics/140.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pogson G. H., Mesa K. A., Boutilier R. G. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics. 1995 Jan;139(1):375–385. doi: 10.1093/genetics/139.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Prout T., Barker J. S. F statistics in Drosophila buzzatii: selection, population size and inbreeding. Genetics. 1993 May;134(1):369–375. doi: 10.1093/genetics/134.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scribner K. T., Arntzen J. W., Burke T. Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Mol Biol Evol. 1994 Sep;11(5):737–748. doi: 10.1093/oxfordjournals.molbev.a040154. [DOI] [PubMed] [Google Scholar]
  15. Spitze K. Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics. 1993 Oct;135(2):367–374. doi: 10.1093/genetics/135.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tulsieram L. K., Glaubitz J. C., Kiss G., Carlson J. E. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology (N Y) 1992 Jun;10(6):686–690. doi: 10.1038/nbt0692-686. [DOI] [PubMed] [Google Scholar]
  17. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yang R. C., Yeh F. C., Yanchuk A. D. A comparison of isozyme and quantitative genetic variation in Pinus contorta ssp. latifolia by FST. Genetics. 1996 Mar;142(3):1045–1052. doi: 10.1093/genetics/142.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. el Mousadik A., Petit R. J. Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol. 1996 Aug;5(4):547–555. doi: 10.1111/j.1365-294x.1996.tb00346.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES