Skip to main content
Genetics logoLink to Genetics
. 1997 Jul;146(3):973–982. doi: 10.1093/genetics/146.3.973

Population Dynamics Inferred from Temporal Variation at Microsatellite Loci in the Selfing Snail Bulinus Truncatus

F Viard 1, F Justy 1, P Jarne 1
PMCID: PMC1208065  PMID: 9215901

Abstract

We analyzed short-term forces acting on the genetics of subdivided populations based on a temporal survey of the microsatellite variability in the hermaphrodite freshwater snail Bulinus truncatus. This species inhabits temporary habitats, has a short generation time and exhibits variable rates of selfing. We studied the variability over three sampling dates in 12 Sahelian populations (1161 individuals). Classical genetic parameters (estimators of H(o), H(e), f, selfing rate and Fst) showed limited change over time whereas important temporal changes of allelic frequencies were detected for 10 of the ponds studied. These variations are not easily explained by selection, sampling drift and genetic drift alone and may be due to periodic migration. Indeed the habitats occupied by the populations studied are subject to large temporal fluctuations owing to annual cycles of drought and flood. In such ponds our results support a demographic model of population expansions and contractions under which available habitats, after the rainy season, are colonized by individuals originating from a smaller number of refuges (areas that never dry out in the deepest parts of the ponds). In contrast, selfing appeared to be an important force affecting the genetic structure in permanent ponds.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker J. S., East P. D., Weir B. S. Temporal and microgeographic variation in allozyme frequencies in a natural population of Drosophila buzzatii. Genetics. 1986 Mar;112(3):577–611. doi: 10.1093/genetics/112.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Betterton C., Ndifon G. T., Tan R. M. Schistosomiasis in Kano State, Nigeria. II. Field studies on aestivation in Bulinus rohlfsi (Clessin) and B. globosus (Morelet) and their susceptibility to local strains of Schistosoma haematobium (Bilharz). Ann Trop Med Parasitol. 1988 Dec;82(6):571–579. [PubMed] [Google Scholar]
  3. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cornuet J. M., Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996 Dec;144(4):2001–2014. doi: 10.1093/genetics/144.4.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jarne P., Delay B., Bellec C., Roizes G., Cuny G. Analysis of mating systems in the schistosome-vector hermaphrodite snail Bulinus globosus by DNA fingerprinting. Heredity (Edinb) 1992 Feb;68(Pt 2):141–146. doi: 10.1038/hdy.1992.22. [DOI] [PubMed] [Google Scholar]
  6. Mueller L. D., Barr L. G., Ayala F. J. Natural selection vs. random drift: evidence from temporal variation in allele frequencies in nature. Genetics. 1985 Nov;111(3):517–554. doi: 10.1093/genetics/111.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. doi: 10.1098/rspb.1997.0006. [DOI] [PMC free article] [Google Scholar]
  8. Pamilo P., Varvio-Aho S. L. On the estimation of population size from allele frequency changes. Genetics. 1980 Aug;95(4):1055–1057. doi: 10.1093/genetics/95.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pollak E. On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics. 1987 Oct;117(2):353–360. doi: 10.1093/genetics/117.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rannala B., Hartigan J. A. Identity by descent in island-mainland populations. Genetics. 1995 Jan;139(1):429–437. doi: 10.1093/genetics/139.1.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rannala B. The Sampling Theory of Neutral Alleles in an Island Population of Fluctuating Size. Theor Popul Biol. 1996 Aug;50(1):91–104. doi: 10.1006/tpbi.1996.0024. [DOI] [PubMed] [Google Scholar]
  12. Rousset F. Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics. 1996 Apr;142(4):1357–1362. doi: 10.1093/genetics/142.4.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Saghai Maroof M. A., Biyashev R. M., Yang G. P., Zhang Q., Allard R. W. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5466–5470. doi: 10.1073/pnas.91.12.5466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Slatkin M. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol. 1977 Dec;12(3):253–262. doi: 10.1016/0040-5809(77)90045-4. [DOI] [PubMed] [Google Scholar]
  16. Viard F., Bremond P., Labbo R., Justy F., Delay B., Jarne P. Microsatellites and the genetics of highly selfing populations in the freshwater snail Bulinus truncatus. Genetics. 1996 Apr;142(4):1237–1247. doi: 10.1093/genetics/142.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Waples R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics. 1989 Feb;121(2):379–391. doi: 10.1093/genetics/121.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES