Skip to main content
Genetics logoLink to Genetics
. 1997 Aug;146(4):1381–1397. doi: 10.1093/genetics/146.4.1381

Germ-Line Effects of a Mutator, Mu2, in Drosophila Melanogaster

J M Mason 1, L E Champion 1, G Hook 1
PMCID: PMC1208082  PMID: 9258681

Abstract

A mutator, mu2(a), in Drosophila melanogaster potentiates terminal deficiencies. In the female germ line the y mutant frequency induced by irradiation of mature oocytes with 5 Gy increases approximately twofold in heterozygotes and 20-fold in homozygotes compared with wild type. The recovery of terminal deficiencies is not limited to breaks close to chromosome ends; high frequencies of deficiencies can be recovered with breakpoints located in centric heterochromatin or near the middle of a chromosome arm. Lesions induced by γ-rays are repaired slowly in mu2(a) oocytes, but become ``fixed'' as terminal deficiencies upon fertilization. A few lesions induced in wild-type females also produce terminal deficiencies. Mutator males do not exhibit an increase in terminal deletions, regardless of the germ cell stage irradiated. In addition, there is no increase in the mutant frequency when mature sperm are irradiated and fertilize eggs produced by mu2(a) females. The data are consistent with the hypothesis that lesions induced in sperm chromosomes are repaired after fertilization, while lesions induced in oocyte chromosomes are shunted instead to a mechanism that stabilizes broken chromosome ends. We propose that mu2 affects chromosomal structure during oogenesis, thereby modulating DNA repair.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Boyd J. B., Carpenter A. T., Green M. M., Nguyen T. D., Ripoll P., Smith P. D. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4140–4144. doi: 10.1073/pnas.73.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnett M. A., Buckle V. J., Evans E. P., Porter A. C., Rout D., Smith A. G., Brown W. R. Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res. 1993 Jan 11;21(1):27–36. doi: 10.1093/nar/21.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett C. B., Rainbow A. J. DNA damage and biological expression of adenovirus: a comparison of liquid versus frozen conditions of exposure to gamma rays. Radiat Res. 1989 Oct;120(1):102–112. [PubMed] [Google Scholar]
  4. Biessmann H., Carter S. B., Mason J. M. Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1758–1761. doi: 10.1073/pnas.87.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biessmann H., Mason J. M. Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J. 1988 Apr;7(4):1081–1086. doi: 10.1002/j.1460-2075.1988.tb02916.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Biessmann H., Mason J. M. Telomeric repeat sequences. Chromosoma. 1994 Jun;103(3):154–161. doi: 10.1007/BF00368007. [DOI] [PubMed] [Google Scholar]
  7. Boyd J. B., Mason J. M., Yamamoto A. H., Brodberg R. K., Banga S. S., Sakaguchi K. A genetic and molecular analysis of DNA repair in Drosophila. J Cell Sci Suppl. 1987;6:39–60. doi: 10.1242/jcs.1984.supplement_6.3. [DOI] [PubMed] [Google Scholar]
  8. Eeken J. C., de Jong A. W., Loos M., Vreeken C., Romeyn R., Pastink A., Lohman P. H. The nature of X-ray-induced mutations in mature sperm and spermatogonial cells of Drosophila melanogaster. Mutat Res. 1994 May 1;307(1):201–212. doi: 10.1016/0027-5107(94)90293-3. [DOI] [PubMed] [Google Scholar]
  9. Farr C. J., Stevanovic M., Thomson E. J., Goodfellow P. N., Cooke H. J. Telomere-associated chromosome fragmentation: applications in genome manipulation and analysis. Nat Genet. 1992 Dec;2(4):275–282. doi: 10.1038/ng1292-275. [DOI] [PubMed] [Google Scholar]
  10. Farr C., Fantes J., Goodfellow P., Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7006–7010. doi: 10.1073/pnas.88.16.7006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flint J., Craddock C. F., Villegas A., Bentley D. P., Williams H. J., Galanello R., Cao A., Wood W. G., Ayyub H., Higgs D. R. Healing of broken human chromosomes by the addition of telomeric repeats. Am J Hum Genet. 1994 Sep;55(3):505–512. [PMC free article] [PubMed] [Google Scholar]
  12. Graf U., Green M. M., Würgler F. E. Mutagen-sensitive mutants in Drosophila melanogaster: effects on premutational damage. Mutat Res. 1979 Nov;63(1):101–112. doi: 10.1016/0027-5107(79)90107-6. [DOI] [PubMed] [Google Scholar]
  13. Hanish J. P., Yanowitz J. L., de Lange T. Stringent sequence requirements for the formation of human telomeres. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8861–8865. doi: 10.1073/pnas.91.19.8861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hari K. L., Santerre A., Sekelsky J. J., McKim K. S., Boyd J. B., Hawley R. S. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell. 1995 Sep 8;82(5):815–821. doi: 10.1016/0092-8674(95)90478-6. [DOI] [PubMed] [Google Scholar]
  15. Inagaki E., Nakao Y. Comparison of frequency patterns between whole-body and fractional mutations induced by x-rays in Drosophila melanogaster. Mutat Res. 1966 Jun;3(3):268–272. doi: 10.1016/0027-5107(66)90067-4. [DOI] [PubMed] [Google Scholar]
  16. Jacoby D. B., Wensink P. C. DNA binding specificities of YPF1, a Drosophila homolog to the DNA binding subunit of human DNA-dependent protein kinase, Ku. J Biol Chem. 1996 Jul 12;271(28):16827–16832. doi: 10.1074/jbc.271.28.16827. [DOI] [PubMed] [Google Scholar]
  17. Kirk K. E., Harmon B. P., Reichardt I. K., Sedat J. W., Blackburn E. H. Block in anaphase chromosome separation caused by a telomerase template mutation. Science. 1997 Mar 7;275(5305):1478–1481. doi: 10.1126/science.275.5305.1478. [DOI] [PubMed] [Google Scholar]
  18. Kramer K. M., Haber J. E. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes Dev. 1993 Dec;7(12A):2345–2356. doi: 10.1101/gad.7.12a.2345. [DOI] [PubMed] [Google Scholar]
  19. Lamb J., Harris P. C., Wilkie A. O., Wood W. G., Dauwerse J. G., Higgs D. R. De novo truncation of chromosome 16p and healing with (TTAGGG)n in the alpha-thalassemia/mental retardation syndrome (ATR-16). Am J Hum Genet. 1993 Apr;52(4):668–676. [PMC free article] [PubMed] [Google Scholar]
  20. Laurenti P., Graba Y., Rosset R., Pradel J. Genetic and molecular analysis of terminal deletions of chromosome 3R of Drosophila melanogaster. Gene. 1995 Mar 10;154(2):177–181. doi: 10.1016/0378-1119(94)00831-c. [DOI] [PubMed] [Google Scholar]
  21. Levis R. W., Ganesan R., Houtchens K., Tolar L. A., Sheen F. M. Transposons in place of telomeric repeats at a Drosophila telomere. Cell. 1993 Dec 17;75(6):1083–1093. doi: 10.1016/0092-8674(93)90318-k. [DOI] [PubMed] [Google Scholar]
  22. Levis R. W. Viable deletions of a telomere from a Drosophila chromosome. Cell. 1989 Aug 25;58(4):791–801. doi: 10.1016/0092-8674(89)90112-8. [DOI] [PubMed] [Google Scholar]
  23. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ljungman M., Nyberg S., Nygren J., Eriksson M., Ahnström G. DNA-bound proteins contribute much more than soluble intracellular compounds to the intrinsic protection against radiation-induced DNA strand breaks in human cells. Radiat Res. 1991 Aug;127(2):171–176. [PubMed] [Google Scholar]
  25. Ljungman M. The influence of chromatin structure on the frequency of radiation-induced DNA strand breaks: a study using nuclear and nucleoid monolayers. Radiat Res. 1991 Apr;126(1):58–64. [PubMed] [Google Scholar]
  26. Maddern R. H., Leigh B. The timing of the restitution of chromosome breaks induced by X-rays in the mature sperm of Drosophila melanogaster. Mutat Res. 1976 Dec;41(2-3):255–268. doi: 10.1016/0027-5107(76)90099-3. [DOI] [PubMed] [Google Scholar]
  27. Mason J. M., Biessmann H. The unusual telomeres of Drosophila. Trends Genet. 1995 Feb;11(2):58–62. doi: 10.1016/s0168-9525(00)88998-2. [DOI] [PubMed] [Google Scholar]
  28. Mason J. M., Champion L. Meiotic effects of a mutator in Drosophila melanogaster that potentiates the recovery of terminal deletions. Prog Clin Biol Res. 1989;318:73–80. [PubMed] [Google Scholar]
  29. Mason J. M., Strobel E., Green M. M. mu-2: mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6090–6094. doi: 10.1073/pnas.81.19.6090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McClintock B. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci U S A. 1939 Aug;25(8):405–416. doi: 10.1073/pnas.25.8.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McClintock B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A. 1942 Nov;28(11):458–463. doi: 10.1073/pnas.28.11.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McClintock B. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 1941 Mar;26(2):234–282. doi: 10.1093/genetics/26.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meltzer P. S., Guan X. Y., Trent J. M. Telomere capture stabilizes chromosome breakage. Nat Genet. 1993 Jul;4(3):252–255. doi: 10.1038/ng0793-252. [DOI] [PubMed] [Google Scholar]
  34. Murphy T. D., Karpen G. H. Localization of centromere function in a Drosophila minichromosome. Cell. 1995 Aug 25;82(4):599–609. doi: 10.1016/0092-8674(95)90032-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Newton G. L., Aguilera J. A., Ward J. F., Fahey R. C. Polyamine-induced compaction and aggregation of DNA--a major factor in radioprotection of chromatin under physiological conditions. Radiat Res. 1996 Jun;145(6):776–780. [PubMed] [Google Scholar]
  36. Nygren J., Ljungman M., Ahnström G. Chromatin structure and radiation-induced DNA strand breaks in human cells: soluble scavengers and DNA-bound proteins offer a better protection against single- than double-strand breaks. Int J Radiat Biol. 1995 Jul;68(1):11–18. doi: 10.1080/09553009514550861. [DOI] [PubMed] [Google Scholar]
  37. Oleinick N. L., Balasubramaniam U., Xue L., Chiu S. Nuclear structure and the microdistribution of radiation damage in DNA. Int J Radiat Biol. 1994 Nov;66(5):523–529. doi: 10.1080/09553009414551561. [DOI] [PubMed] [Google Scholar]
  38. Parker D R, Hammond A E. The Production of Translocations in Drosophila Oocytes. Genetics. 1958 Jan;43(1):92–100. doi: 10.1093/genetics/43.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. RINEHART R. R. INFLUENCE OF OXYGEN, HELIUM, AND METABOLIC INHIBITION ON X-RAY INDUCED DOMINANT LETHALITY IN STAGE 7 AND STAGE 14 OOCYTES OF DROSOPHILA MELANOGASTER. Genetics. 1964 May;49:855–863. doi: 10.1093/genetics/49.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  41. Sandell L. L., Zakian V. A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell. 1993 Nov 19;75(4):729–739. doi: 10.1016/0092-8674(93)90493-a. [DOI] [PubMed] [Google Scholar]
  42. Savage J. R. Interchange and intra-nuclear architecture. Environ Mol Mutagen. 1993;22(4):234–244. doi: 10.1002/em.2850220410. [DOI] [PubMed] [Google Scholar]
  43. Schulz V. P., Zakian V. A. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell. 1994 Jan 14;76(1):145–155. doi: 10.1016/0092-8674(94)90179-1. [DOI] [PubMed] [Google Scholar]
  44. Schwartz J. L., Vaughan A. T. DNA-nuclear matrix interactions and ionizing radiation sensitivity. Environ Mol Mutagen. 1993;22(4):231–233. doi: 10.1002/em.2850220409. [DOI] [PubMed] [Google Scholar]
  45. Stewart B. R., Merriam J. R. Regulation of gene activity by dosage compensation at the chromosomal level in drosophila. Genetics. 1975 Apr;79(4):635–647. doi: 10.1093/genetics/79.4.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thompson-Stewart D., Karpen G. H., Spradling A. C. A transposable element can drive the concerted evolution of tandemly repetitious DNA. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9042–9046. doi: 10.1073/pnas.91.19.9042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tower J., Karpen G. H., Craig N., Spradling A. C. Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics. 1993 Feb;133(2):347–359. doi: 10.1093/genetics/133.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Traut H., Scheid W. Cytological analysis of partial and total X-chromosome loss induced by x-rays in oocytes of Drosophila melanogaster. Mutat Res. 1970 Dec;10(6):583–589. doi: 10.1016/0027-5107(70)90085-0. [DOI] [PubMed] [Google Scholar]
  49. Voelker R. A., Huang S. M., Wisely G. B., Sterling J. F., Bainbridge S. P., Hiraizumi K. Molecular and genetic organization of the suppressor of sable and minute (1) 1B region in Drosophila melanogaster. Genetics. 1989 Jul;122(3):625–642. doi: 10.1093/genetics/122.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Ward J. F. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125. doi: 10.1016/s0079-6603(08)60611-x. [DOI] [PubMed] [Google Scholar]
  51. Warters R. L., Lyons B. W. Variation in radiation-induced formation of DNA double-strand breaks as a function of chromatin structure. Radiat Res. 1992 Jun;130(3):309–318. [PubMed] [Google Scholar]
  52. Watson J. D. Origin of concatemeric T7 DNA. Nat New Biol. 1972 Oct 18;239(94):197–201. doi: 10.1038/newbio239197a0. [DOI] [PubMed] [Google Scholar]
  53. Wilkie A. O., Lamb J., Harris P. C., Finney R. D., Higgs D. R. A truncated human chromosome 16 associated with alpha thalassaemia is stabilized by addition of telomeric repeat (TTAGGG)n. Nature. 1990 Aug 30;346(6287):868–871. doi: 10.1038/346868a0. [DOI] [PubMed] [Google Scholar]
  54. Würgler F. E., Matter B. E. Split-dose experiments with stage-14 oocytes of Drosophila melanogaster. Mutat Res. 1968 Nov-Dec;6(3):484–486. doi: 10.1016/0027-5107(68)90069-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES