Abstract
Variation in repeat number at 20 microsatellite loci of Arabidopsis thaliana was studied in a worldwide sample of 42 ecotypes to investigate the pattern and level of polymorphism in repetitive sequences in natural plant populations. There is a substantial amount of variation at microsatellite loci despite the selfing nature of this plant species. The average gene diversity was 0.794 and the average number of alleles per locus was 10.6. The distribution of alleles was centered around the mean of repeat number at most loci, but could not be regarded as normal. There was a significantly positive correlation between the number of repeats and the amount of variation. For most loci, the observed number of alleles was between the expected values of the infinite allele and stepwise mutation models. The two models were rejected by the sign test. Linkage disequilibrium was detected in 12.1% of the pairwise comparisons between loci. In phylogenetic tree, there was no association between ecotype and geographic origin. This result is consistent with the recent expansion of A. thaliana throughout the world.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baird M., Balazs I., Giusti A., Miyazaki L., Nicholas L., Wexler K., Kanter E., Glassberg J., Allen F., Rubinstein P. Allele frequency distribution of two highly polymorphic DNA sequences in three ethnic groups and its application to the determination of paternity. Am J Hum Genet. 1986 Oct;39(4):489–501. [PMC free article] [PubMed] [Google Scholar]
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
- Chakraborty R., Fornage M., Gueguen R., Boerwinkle E. Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. EXS. 1991;58:127–143. doi: 10.1007/978-3-0348-7312-3_10. [DOI] [PubMed] [Google Scholar]
- Clark A. G. Neutrality tests of highly polymorphic restriction-fragment-length polymorphisms. Am J Hum Genet. 1987 Nov;41(5):948–956. [PMC free article] [PubMed] [Google Scholar]
- Condit R., Hubbell S. P. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome. 1991 Feb;34(1):66–71. doi: 10.1139/g91-011. [DOI] [PubMed] [Google Scholar]
- Dallas J. F. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm Genome. 1992;3(8):452–456. doi: 10.1007/BF00356155. [DOI] [PubMed] [Google Scholar]
- Deka R., Chakroborty R., Ferrell R. E. A population genetic study of six VNTR loci in three ethnically defined populations. Genomics. 1991 Sep;11(1):83–92. doi: 10.1016/0888-7543(91)90104-m. [DOI] [PubMed] [Google Scholar]
- Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estoup A., Garnery L., Solignac M., Cornuet J. M. Microsatellite variation in honey bee (Apis mellifera L.) populations: hierarchical genetic structure and test of the infinite allele and stepwise mutation models. Genetics. 1995 Jun;140(2):679–695. doi: 10.1093/genetics/140.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estoup A., Tailliez C., Cornuet J. M., Solignac M. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol. 1995 Nov;12(6):1074–1084. doi: 10.1093/oxfordjournals.molbev.a040282. [DOI] [PubMed] [Google Scholar]
- Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
- Hudson T. J., Engelstein M., Lee M. K., Ho E. C., Rubenfield M. J., Adams C. P., Housman D. E., Dracopoli N. C. Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics. 1992 Jul;13(3):622–629. doi: 10.1016/0888-7543(92)90133-d. [DOI] [PubMed] [Google Scholar]
- Innan H., Tajima F., Terauchi R., Miyashita N. T. Intragenic recombination in the Adh locus of the wild plant Arabidopsis thaliana. Genetics. 1996 Aug;143(4):1761–1770. doi: 10.1093/genetics/143.4.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. Distribution of allelic frequencies in a finite population under stepwise production of neutral alleles. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2761–2764. doi: 10.1073/pnas.72.7.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M., Ohta T. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2868–2872. doi: 10.1073/pnas.75.6.2868. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lagercrantz U., Ellegren H., Andersson L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res. 1993 Mar 11;21(5):1111–1115. doi: 10.1093/nar/21.5.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michalakis Y., Veuille M. Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics. 1996 Aug;143(4):1713–1725. doi: 10.1093/genetics/143.4.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgante M., Olivieri A. M. PCR-amplified microsatellites as markers in plant genetics. Plant J. 1993 Jan;3(1):175–182. [PubMed] [Google Scholar]
- Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
- Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
- Powell W., Morgante M., McDevitt R., Vendramin G. G., Rafalski J. A. Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7759–7763. doi: 10.1073/pnas.92.17.7759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Senior M. L., Heun M. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome. 1993 Oct;36(5):884–889. doi: 10.1139/g93-116. [DOI] [PubMed] [Google Scholar]
- Shen S. H., Slightom J. L., Smithies O. A history of the human fetal globin gene duplication. Cell. 1981 Oct;26(2 Pt 2):191–203. doi: 10.1016/0092-8674(81)90302-0. [DOI] [PubMed] [Google Scholar]
- Silver L. M. Bouncing off microsatellites. Nat Genet. 1992 Sep;2(1):8–9. doi: 10.1038/ng0992-8. [DOI] [PubMed] [Google Scholar]
- Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984 May 25;12(10):4127–4138. doi: 10.1093/nar/12.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terauchi R. A polymorphic microsatellite marker from the tropical tree Dryobalanops lanceolata (Dipterocarpaceae). Jpn J Genet. 1994 Oct;69(5):567–576. doi: 10.1266/jjg.69.567. [DOI] [PubMed] [Google Scholar]
- Terauchi R., Konuma A. Microsatellite polymorphism in Dioscorea tokoro, a wild yam species. Genome. 1994 Oct;37(5):794–801. doi: 10.1139/g94-113. [DOI] [PubMed] [Google Scholar]
- Valdes A. M., Slatkin M., Freimer N. B. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics. 1993 Mar;133(3):737–749. doi: 10.1093/genetics/133.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang A. H., Quigley G. J., Kolpak F. J., Crawford J. L., van Boom J. H., van der Marel G., Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680–686. doi: 10.1038/282680a0. [DOI] [PubMed] [Google Scholar]
- Weber J. L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990 Aug;7(4):524–530. doi: 10.1016/0888-7543(90)90195-z. [DOI] [PubMed] [Google Scholar]
- Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
- Wolff R. K., Plaetke R., Jeffreys A. J., White R. Unequal crossingover between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics. 1989 Aug;5(2):382–384. doi: 10.1016/0888-7543(89)90076-1. [DOI] [PubMed] [Google Scholar]
- Wu K. S., Tanksley S. D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet. 1993 Oct;241(1-2):225–235. doi: 10.1007/BF00280220. [DOI] [PubMed] [Google Scholar]
- Wyman A. R., White R. A highly polymorphic locus in human DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6754–6758. doi: 10.1073/pnas.77.11.6754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao X., Kochert G. Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.). Plant Mol Biol. 1993 Feb;21(4):607–614. doi: 10.1007/BF00014544. [DOI] [PubMed] [Google Scholar]
- van Treuren R., Kuittinen H., Kärkkäinen K., Baena-Gonzalez E., Savolainen O. Evolution of microsatellites in Arabis petraea and Arabis lyrata, outcrossing relatives of Arabidopsis thaliana. Mol Biol Evol. 1997 Mar;14(3):220–229. doi: 10.1093/oxfordjournals.molbev.a025758. [DOI] [PubMed] [Google Scholar]
