Skip to main content
Genetics logoLink to Genetics
. 1997 Sep;147(1):165–175. doi: 10.1093/genetics/147.1.165

Divergence of the Yellow Gene between Drosophila Melanogaster and D. Subobscura: Recombination Rate, Codon Bias and Synonymous Substitutions

A Munte 1, M Aguade 1, C Segarra 1
PMCID: PMC1208100  PMID: 9286677

Abstract

The yellow (y) gene maps near the telomere of the X chromosome in Drosophila melanogaster but not in D. subobscura. Thus the strong reduction in the recombination rate associated with telomeric regions is not expected in D. subobscura. To study the divergence of a gene whose recombination rate differs between two species, the y gene of D. subobscura was sequenced. Sequence comparison between D. melanogaster and D. subobscura revealed several elements conserved in noncoding regions that may correspond to putative cis-acting regulatory sequences. Divergence in the y gene coding region between D. subobscura and D. melanogaster was compared with that found in other genes sequenced in both species. Both, yellow and scute exhibit an unusually high number of synonymous substitutions per site (p(s)). Also for these genes, the extent of codon bias differs between both species, being much higher in D. subobscura than in D. melanogaster. This pattern of divergence is consistent with the hitchhiking and background selection models that predict an increase in the fixation rate of slightly deleterious mutations and a decrease in the rate of fixation of slightly advantageous mutations in regions with low recombination rates such as in the y-sc gene region of D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguade M., Miyashita N., Langley C. H. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics. 1989 Jul;122(3):607–615. doi: 10.1093/genetics/122.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aguadé M. Nucleotide sequence comparison of the rp49 gene region between Drosophila subobscura and D. melanogaster. Mol Biol Evol. 1988 Jul;5(4):433–441. doi: 10.1093/oxfordjournals.molbev.a040502. [DOI] [PubMed] [Google Scholar]
  3. Akashi H. Inferring weak selection from patterns of polymorphism and divergence at "silent" sites in Drosophila DNA. Genetics. 1995 Feb;139(2):1067–1076. doi: 10.1093/genetics/139.2.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Begun D. J., Aquadro C. F. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. doi: 10.1038/365548a0. [DOI] [PubMed] [Google Scholar]
  5. Begun D. J., Aquadro C. F. Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991 Dec;129(4):1147–1158. doi: 10.1093/genetics/129.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berry A. J., Ajioka J. W., Kreitman M. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics. 1991 Dec;129(4):1111–1117. doi: 10.1093/genetics/129.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Birky C. W., Jr, Walsh J. B. Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414–6418. doi: 10.1073/pnas.85.17.6414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Botella L. M., Doñoro C., Sánchez L., Segarra C., Granadino B. Cloning and characterization of the scute (sc) gene of Drosophila subobscura. Genetics. 1996 Nov;144(3):1043–1051. doi: 10.1093/genetics/144.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Charlesworth B. The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994 Jun;63(3):213–227. doi: 10.1017/s0016672300032365. [DOI] [PubMed] [Google Scholar]
  11. Comeron J. M., Aguadé M. Synonymous substitutions in the Xdh gene of Drosophila: heterogeneous distribution along the coding region. Genetics. 1996 Nov;144(3):1053–1062. doi: 10.1093/genetics/144.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ferrer P., Crozatier M., Salles C., Vincent A. Interspecific comparison of Drosophila serendipity delta and beta: multimodular structure of these C2H2 zinc finger proteins. J Mol Evol. 1994 Mar;38(3):263–273. doi: 10.1007/BF00176088. [DOI] [PubMed] [Google Scholar]
  14. Geyer P. K., Corces V. G. Separate regulatory elements are responsible for the complex pattern of tissue-specific and developmental transcription of the yellow locus in Drosophila melanogaster. Genes Dev. 1987 Nov;1(9):996–1004. doi: 10.1101/gad.1.9.996. [DOI] [PubMed] [Google Scholar]
  15. Geyer P. K., Spana C., Corces V. G. On the molecular mechanism of gypsy-induced mutations at the yellow locus of Drosophila melanogaster. EMBO J. 1986 Oct;5(10):2657–2662. doi: 10.1002/j.1460-2075.1986.tb04548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  17. Higuchi R. G., Ochman H. Production of single-stranded DNA templates by exonuclease digestion following the polymerase chain reaction. Nucleic Acids Res. 1989 Jul 25;17(14):5865–5865. doi: 10.1093/nar/17.14.5865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hill W. G., Robertson A. The effect of linkage on limits to artificial selection. Genet Res. 1966 Dec;8(3):269–294. [PubMed] [Google Scholar]
  19. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  20. Kaplan N. L., Hudson R. R., Langley C. H. The "hitchhiking effect" revisited. Genetics. 1989 Dec;123(4):887–899. doi: 10.1093/genetics/123.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kilger C., Schmid K. Rapid characterization of bacterial clones by microwave treatment and PCR. Trends Genet. 1994 May;10(5):149–149. doi: 10.1016/0168-9525(94)90082-5. [DOI] [PubMed] [Google Scholar]
  22. Kornezos A., Chia W. Apical secretion and association of the Drosophila yellow gene product with developing larval cuticle structures during embryogenesis. Mol Gen Genet. 1992 Nov;235(2-3):397–405. doi: 10.1007/BF00279386. [DOI] [PubMed] [Google Scholar]
  23. Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
  24. Lange B. W., Langley C. H., Stephan W. Molecular evolution of Drosophila metallothionein genes. Genetics. 1990 Dec;126(4):921–932. doi: 10.1093/genetics/126.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lloyd A. T., Sharp P. M. CODONS: a microcomputer program for codon usage analysis. J Hered. 1992 May-Jun;83(3):239–240. doi: 10.1093/oxfordjournals.jhered.a111205. [DOI] [PubMed] [Google Scholar]
  26. Martin M., Meng Y. B., Chia W. Regulatory elements involved in the tissue-specific expression of the yellow gene of Drosophila. Mol Gen Genet. 1989 Jul;218(1):118–126. doi: 10.1007/BF00330574. [DOI] [PubMed] [Google Scholar]
  27. Martín-Campos J. M., Comerón J. M., Miyashita N., Aguadé M. Intraspecific and interspecific variation at the y-ac-sc region of Drosophila simulans and Drosophila melanogaster. Genetics. 1992 Apr;130(4):805–816. doi: 10.1093/genetics/130.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Miyashita N. T., Langley C. H. Restriction map polymorphism in the forked and vermilion regions of Drosophila melanogaster. Jpn J Genet. 1994 Jun;69(3):297–305. doi: 10.1266/jjg.69.297. [DOI] [PubMed] [Google Scholar]
  29. Nei M., Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986 Sep;3(5):418–426. doi: 10.1093/oxfordjournals.molbev.a040410. [DOI] [PubMed] [Google Scholar]
  30. Penalva L. O., Sakamoto H., Navarro-Sabaté A., Sakashita E., Granadino B., Segarra C., Sánchez L. Regulation of the gene Sex-lethal: a comparative analysis of Drosophila melanogaster and Drosophila subobscura. Genetics. 1996 Dec;144(4):1653–1664. doi: 10.1093/genetics/144.4.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sarich V. M., Wilson A. C. Generation time and genomic evolution in primates. Science. 1973 Mar 16;179(4078):1144–1147. doi: 10.1126/science.179.4078.1144. [DOI] [PubMed] [Google Scholar]
  32. Segarra C., Aguadé M. Molecular organization of the X chromosome in different species of the obscura group of Drosophila. Genetics. 1992 Mar;130(3):513–521. doi: 10.1093/genetics/130.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Segarra C., Lozovskaya E. R., Ribó G., Aguadé M., Hartl D. L. P1 clones from Drosophila melanogaster as markers to study the chromosomal evolution of Muller's A element in two species of the obscura group of Drosophila. Chromosoma. 1995 Nov;104(2):129–136. doi: 10.1007/BF00347695. [DOI] [PubMed] [Google Scholar]
  34. Sharp P. M., Li W. H. On the rate of DNA sequence evolution in Drosophila. J Mol Evol. 1989 May;28(5):398–402. doi: 10.1007/BF02603075. [DOI] [PubMed] [Google Scholar]
  35. Shields D. C., Sharp P. M., Higgins D. G., Wright F. "Silent" sites in Drosophila genes are not neutral: evidence of selection among synonymous codons. Mol Biol Evol. 1988 Nov;5(6):704–716. doi: 10.1093/oxfordjournals.molbev.a040525. [DOI] [PubMed] [Google Scholar]
  36. Smith J. M., Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  37. Staden R. Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Res. 1982 Aug 11;10(15):4731–4751. doi: 10.1093/nar/10.15.4731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stephan W., Langley C. H. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989 Jan;121(1):89–99. doi: 10.1093/genetics/121.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stephan W., Mitchell S. J. Reduced levels of DNA polymorphism and fixed between-population differences in the centromeric region of Drosophila ananassae. Genetics. 1992 Dec;132(4):1039–1045. doi: 10.1093/genetics/132.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Terol J., Perez-Alonso M., de Frutos R. Molecular characterization of the zerknüllt region of the Antennapedia complex of D. subobscura. Chromosoma. 1995 May;103(9):613–624. doi: 10.1007/BF00357688. [DOI] [PubMed] [Google Scholar]
  41. Wharton K. A., Yedvobnick B., Finnerty V. G., Artavanis-Tsakonas S. opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell. 1985 Jan;40(1):55–62. doi: 10.1016/0092-8674(85)90308-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES