Skip to main content
Genetics logoLink to Genetics
. 1997 Sep;147(1):243–253. doi: 10.1093/genetics/147.1.243

The Genes Raw and Ribbon Are Required for Proper Shape of Tubular Epithelial Tissues in Drosophila

J Jack 1, G Myette 1
PMCID: PMC1208108  PMID: 9286684

Abstract

The products of two genes, raw and ribbon (rib), are required for the proper morphogenesis of a variety of tissues. Malpighian tubules mutant for raw or rib are wider and shorter than normal tubules, which are only two cells in circumference when they are fully formed. The mutations alter the shape of the tubules beginning early in their formation and block cell rearrangement late in development, which normally lengthens and narrows the tubes. Mutations of both genes affect a number of other tissues as well. Both genes are required for dorsal closure and retraction of the CNS during embryonic development. In addition, rib mutations block head involution, and broaden and shorten other tubular epithelia (salivary glands, tracheae, and hindgut) in much same manner as they alter the shape of the Malpighian tubules. In tissues in which the shape of cells can be observed readily, rib mutations alter cell shape, which probably causes the change in shape of the organs that are affected. In double mutants raw enhances the phenotypes of all the tissues that are affected by rib but unaffected by raw alone, indicating that raw is also active in these tissues.

Full Text

The Full Text of this article is available as a PDF (9.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blochlinger K., Bodmer R., Jack J., Jan L. Y., Jan Y. N. Primary structure and expression of a product from cut, a locus involved in specifying sensory organ identity in Drosophila. Nature. 1988 Jun 16;333(6174):629–635. doi: 10.1038/333629a0. [DOI] [PubMed] [Google Scholar]
  2. Conboy J. G., Chasis J. A., Winardi R., Tchernia G., Kan Y. W., Mohandas N. An isoform-specific mutation in the protein 4.1 gene results in hereditary elliptocytosis and complete deficiency of protein 4.1 in erythrocytes but not in nonerythroid cells. J Clin Invest. 1993 Jan;91(1):77–82. doi: 10.1172/JCI116203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Condic M. L., Fristrom D., Fristrom J. W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development. 1991 Jan;111(1):23–33. doi: 10.1242/dev.111.1.23. [DOI] [PubMed] [Google Scholar]
  4. Côté S., Preiss A., Haller J., Schuh R., Kienlin A., Seifert E., Jäckle H. The gooseberry-zipper region of Drosophila: five genes encode different spatially restricted transcripts in the embryo. EMBO J. 1987 Sep;6(9):2793–2801. doi: 10.1002/j.1460-2075.1987.tb02575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Discher D. E., Winardi R., Schischmanoff P. O., Parra M., Conboy J. G., Mohandas N. Mechanochemistry of protein 4.1's spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol. 1995 Aug;130(4):897–907. doi: 10.1083/jcb.130.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eberl D. F., Hilliker A. J. Characterization of X-linked recessive lethal mutations affecting embryonic morphogenesis in Drosophila melanogaster. Genetics. 1988 Jan;118(1):109–120. doi: 10.1093/genetics/118.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fehon R. G., Dawson I. A., Artavanis-Tsakonas S. A Drosophila homologue of membrane-skeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene. Development. 1994 Mar;120(3):545–557. doi: 10.1242/dev.120.3.545. [DOI] [PubMed] [Google Scholar]
  8. Gotwals P. J., Fristrom J. W. Three neighboring genes interact with the Broad-Complex and the Stubble-stubbloid locus to affect imaginal disc morphogenesis in Drosophila. Genetics. 1991 Apr;127(4):747–759. doi: 10.1093/genetics/127.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grawe F., Wodarz A., Lee B., Knust E., Skaer H. The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions. Development. 1996 Mar;122(3):951–959. doi: 10.1242/dev.122.3.951. [DOI] [PubMed] [Google Scholar]
  10. Grenningloh G., Rehm E. J., Goodman C. S. Genetic analysis of growth cone guidance in Drosophila: fasciclin II functions as a neuronal recognition molecule. Cell. 1991 Oct 4;67(1):45–57. doi: 10.1016/0092-8674(91)90571-f. [DOI] [PubMed] [Google Scholar]
  11. Hoch M., Broadie K., Jäckle H., Skaer H. Sequential fates in a single cell are established by the neurogenic cascade in the Malpighian tubules of Drosophila. Development. 1994 Dec;120(12):3439–3450. doi: 10.1242/dev.120.12.3439. [DOI] [PubMed] [Google Scholar]
  12. Knust E., Tepass U., Wodarz A. crumbs and stardust, two genes of Drosophila required for the development of epithelial cell polarity. Dev Suppl. 1993:261–268. [PubMed] [Google Scholar]
  13. Liu S., Jack J. Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Krüppel, and caudal genes of Drosophila. Dev Biol. 1992 Mar;150(1):133–143. doi: 10.1016/0012-1606(92)90013-7. [DOI] [PubMed] [Google Scholar]
  14. Liu S., McLeod E., Jack J. Four distinct regulatory regions of the cut locus and their effect on cell type specification in Drosophila. Genetics. 1991 Jan;127(1):151–159. doi: 10.1093/genetics/127.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Manfruelli P., Arquier N., Hanratty W. P., Sémériva M. The tumor suppressor gene, lethal(2)giant larvae (1(2)g1), is required for cell shape change of epithelial cells during Drosophila development. Development. 1996 Jul;122(7):2283–2294. doi: 10.1242/dev.122.7.2283. [DOI] [PubMed] [Google Scholar]
  16. Pankratz M. J., Hoch M., Seifert E., Jäckle H. Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature. 1989 Sep 28;341(6240):337–340. doi: 10.1038/341337a0. [DOI] [PubMed] [Google Scholar]
  17. Pankratz M. J., Seifert E., Gerwin N., Billi B., Nauber U., Jäckle H. Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo. Cell. 1990 Apr 20;61(2):309–317. doi: 10.1016/0092-8674(90)90811-r. [DOI] [PubMed] [Google Scholar]
  18. Strand D., Jakobs R., Merdes G., Neumann B., Kalmes A., Heid H. W., Husmann I., Mechler B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin II heavy chain. J Cell Biol. 1994 Dec;127(5):1361–1373. doi: 10.1083/jcb.127.5.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Strand D., Raska I., Mechler B. M. The Drosophila lethal(2)giant larvae tumor suppressor protein is a component of the cytoskeleton. J Cell Biol. 1994 Dec;127(5):1345–1360. doi: 10.1083/jcb.127.5.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tepass U., Theres C., Knust E. crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell. 1990 Jun 1;61(5):787–799. doi: 10.1016/0092-8674(90)90189-l. [DOI] [PubMed] [Google Scholar]
  21. Winardi R., Discher D., Kelley C., Zon L., Mays K., Mohandas N., Conboy J. G. Evolutionarily conserved alternative pre-mRNA splicing regulates structure and function of the spectrin-actin binding domain of erythroid protein 4.1. Blood. 1995 Dec 1;86(11):4315–4322. [PubMed] [Google Scholar]
  22. Young P. E., Richman A. M., Ketchum A. S., Kiehart D. P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 1993 Jan;7(1):29–41. doi: 10.1101/gad.7.1.29. [DOI] [PubMed] [Google Scholar]
  23. Zipursky S. L., Venkatesh T. R., Teplow D. B., Benzer S. Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell. 1984 Jan;36(1):15–26. doi: 10.1016/0092-8674(84)90069-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES