Abstract
Among progeny of a hybrid (Rana shqiperica X R. lessonae) X R. lessonae, 14 of 22 loci form four linkage groups (LGs): (1) mitochondrial aspartate aminotransferase, carbonate dehydratase-2, esterase 4, peptidase D; (2) mannosephosphate isomerase, lactate dehydrogenase-B, sex, hexokinase-1, peptidase B; (3) albumin, fructose-biphosphatase-1, guanine deaminase; (4) mitochondrial superoxide dismutase, cytosolic malic enzyme, xanthine oxidase. Fructose-biphosphate aldolase-2 and cytosolic aspartate aminotransferase possibly form a fifth LG. Mitochondrial aconitate hydratase, α-glucosidase, glyceraldehyde-3-phosphate dehydrogenase, phosphogluconate dehydrogenase, and phosphoglucomutase-2 are unlinked to other loci. All testable linkages (among eight loci of LGs 1, 2, 3, and 4) are shared with eastern Palearctic water frogs. Including published data, 44 protein loci can be assigned to 10 of the 13 chromosomes in Holarctic Rana. Of testable pairs among 18 protein loci, agreement between Palearctic and Nearctic Rana is complete (125 unlinked, 14 linked pairs among 14 loci of five syntenies), and Holarctic Rana and Xenopus laevis are highly concordant (125 shared nonlinkages, 13 shared linkages, three differences). Several Rana syntenies occur in mammals and fish. Many syntenies apparently have persisted for 60-140 X 10(6) years (frogs), some even for 350-400 X 10(6) years (mammals and teleosts).
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M., Baverstock P. R., Watts C. H., Gutman G. A. Enzyme markers in inbred rat strains: genetics of new markers and strain profiles. Biochem Genet. 1984 Aug;22(7-8):611–629. doi: 10.1007/BF00485848. [DOI] [PubMed] [Google Scholar]
- Barker D., Green P., Knowlton R., Schumm J., Lander E., Oliphant A., Willard H., Akots G., Brown V., Gravius T. Genetic linkage map of human chromosome 7 with 63 DNA markers. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8006–8010. doi: 10.1073/pnas.84.22.8006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Basler K., Christen B., Hafen E. Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye. Cell. 1991 Mar 22;64(6):1069–1081. doi: 10.1016/0092-8674(91)90262-w. [DOI] [PubMed] [Google Scholar]
- Bernatzky R., Tanksley S. D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics. 1986 Apr;112(4):887–898. doi: 10.1093/genetics/112.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bucci S., Ragghianti M., Mancino G., Berger L., Hotz H., Uzzell T. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool. 1990 Jul;255(1):37–56. doi: 10.1002/jez.1402550107. [DOI] [PubMed] [Google Scholar]
- Cline T. W. The Drosophila sex determination signal: how do flies count to two? Trends Genet. 1993 Nov;9(11):385–390. doi: 10.1016/0168-9525(93)90138-8. [DOI] [PubMed] [Google Scholar]
- Copeland N. G., Jenkins N. A., Gilbert D. J., Eppig J. T., Maltais L. J., Miller J. C., Dietrich W. F., Weaver A., Lincoln S. E., Steen R. G. A genetic linkage map of the mouse: current applications and future prospects. Science. 1993 Oct 1;262(5130):57–66. doi: 10.1126/science.8211130. [DOI] [PubMed] [Google Scholar]
- Doerge R. W. Testing for linkage: phase known/unknown. J Hered. 1995 Jan-Feb;86(1):61–62. doi: 10.1093/oxfordjournals.jhered.a111528. [DOI] [PubMed] [Google Scholar]
- Dunlap D. G. Linkage analysis of the transferrin, albumin, and hemoglobin loci in leopard frogs. J Hered. 1982 May-Jun;73(3):247–248. doi: 10.1093/oxfordjournals.jhered.a109632. [DOI] [PubMed] [Google Scholar]
- Elinson R. P. Genetic analysis of developmental arrest in an amphibian hybrid (Rana catesbeiana, Rana clamitans). Dev Biol. 1981 Jan 15;81(1):167–176. doi: 10.1016/0012-1606(81)90359-6. [DOI] [PubMed] [Google Scholar]
- Elinson R. P. Inheritance and expression of a sex-linked enzyme in the frog, Rana clamitans. Biochem Genet. 1983 Jun;21(5-6):435–442. doi: 10.1007/BF00484436. [DOI] [PubMed] [Google Scholar]
- Graf J. D., Kobel H. R. Genetics of Xenopus laevis. Methods Cell Biol. 1991;36:19–34. doi: 10.1016/s0091-679x(08)60270-8. [DOI] [PubMed] [Google Scholar]
- Graf J. D. Sex linkage of malic enzyme in Xenopus laevis. Experientia. 1989 Feb 15;45(2):194–196. doi: 10.1007/BF01954874. [DOI] [PubMed] [Google Scholar]
- Granadino B., Santamaria P., Sánchez L. Sex determination in the germ line of Drosophila melanogaster: activation of the gene Sex-lethal. Development. 1993 Jul;118(3):813–816. doi: 10.1242/dev.118.3.813. [DOI] [PubMed] [Google Scholar]
- Green M. M. Transposable elements in Drosophila and other Diptera. Annu Rev Genet. 1980;14:109–120. doi: 10.1146/annurev.ge.14.120180.000545. [DOI] [PubMed] [Google Scholar]
- Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
- HIROYOSHI T. SEX-LIMITED INHERITANCE AND ABNORMAL SEX RATIO IN STRAINS OF THE HOUSEFLY. Genetics. 1964 Sep;50:373–385. doi: 10.1093/genetics/50.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keyes L. N., Cline T. W., Schedl P. The primary sex determination signal of Drosophila acts at the level of transcription. Cell. 1992 Mar 6;68(5):933–943. doi: 10.1016/0092-8674(92)90036-c. [DOI] [PubMed] [Google Scholar]
- Lalley P. A., Davison M. T., Graves J. A., O'Brien S. J., Womack J. E., Roderick T. H., Creau-Goldberg N., Hillyard A. L., Doolittle D. P., Rogers J. A. Report of the committee on comparative mapping. Cytogenet Cell Genet. 1989;51(1-4):503–532. doi: 10.1159/000132806. [DOI] [PubMed] [Google Scholar]
- Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
- Landry B. S., Kesseli R. V., Farrara B., Michelmore R. W. A Genetic Map of Lettuce (Lactuca sativa L.) with Restriction Fragment Length Polymorphism, Isozyme, Disease Resistance and Morphological Markers. Genetics. 1987 Jun;116(2):331–337. doi: 10.1093/genetics/116.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma R. Z., Russ I., Park C., Heyen D. W., Beever J. E., Green C. A., Lewin H. A. Isolation and characterization of 45 polymorphic microsatellites from the bovine genome. Anim Genet. 1996 Feb;27(1):43–47. doi: 10.1111/j.1365-2052.1996.tb01175.x. [DOI] [PubMed] [Google Scholar]
- Mainx F. Die Geschlechtsbestimmung bei Megaselia scalaris Loew (Phoridae) Z Vererbungsl. 1966;98(1):49–60. [PubMed] [Google Scholar]
- Miura I., Okumoto H., Makino K., Nakata A., Nishioka M. Analysis of the tyrosinase gene of the Japanese pond frog, Rana nigromaculata: cloning and nucleotide sequence of the genomic DNA containing the tyrosinase gene and its flanking regions. Jpn J Genet. 1995 Feb;70(1):79–92. doi: 10.1266/jjg.70.79. [DOI] [PubMed] [Google Scholar]
- Morizot D. C., Slaugenhaupt S. A., Kallman K. D., Chakravarti A. Genetic linkage map of fishes of the genus Xiphophorus (Teleostei: Poeciliidae). Genetics. 1991 Feb;127(2):399–410. doi: 10.1093/genetics/127.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morizot D. C. Use of fish gene maps to predict ancestral vertebrate genome organization. Prog Clin Biol Res. 1990;344:207–234. [PubMed] [Google Scholar]
- Nöthiger R., Steinmann-Zwicky M. A single principle for sex determination in insects. Cold Spring Harb Symp Quant Biol. 1985;50:615–621. doi: 10.1101/sqb.1985.050.01.074. [DOI] [PubMed] [Google Scholar]
- O'Brien S. J., Womack J. E., Lyons L. A., Moore K. J., Jenkins N. A., Copeland N. G. Anchored reference loci for comparative genome mapping in mammals. Nat Genet. 1993 Feb;3(2):103–112. doi: 10.1038/ng0293-103. [DOI] [PubMed] [Google Scholar]
- Ohno S., Wolf U., Atkin N. B. Evolution from fish to mammals by gene duplication. Hereditas. 1968;59(1):169–187. doi: 10.1111/j.1601-5223.1968.tb02169.x. [DOI] [PubMed] [Google Scholar]
- Postlethwait J. H., Johnson S. L., Midson C. N., Talbot W. S., Gates M., Ballinger E. W., Africa D., Andrews R., Carl T., Eisen J. S. A genetic linkage map for the zebrafish. Science. 1994 Apr 29;264(5159):699–703. doi: 10.1126/science.8171321. [DOI] [PubMed] [Google Scholar]
- Rabbitts P., Impey H., Heppell-Parton A., Langford C., Tease C., Lowe N., Bailey D., Ferguson-Smith M., Carter N. Chromosome specific paints from a high resolution flow karyotype of the mouse. Nat Genet. 1995 Apr;9(4):369–375. doi: 10.1038/ng0495-369. [DOI] [PubMed] [Google Scholar]
- Salz H. K., Maine E. M., Keyes L. N., Samuels M. E., Cline T. W., Schedl P. The Drosophila female-specific sex-determination gene, Sex-lethal, has stage-, tissue-, and sex-specific RNAs suggesting multiple modes of regulation. Genes Dev. 1989 May;3(5):708–719. doi: 10.1101/gad.3.5.708. [DOI] [PubMed] [Google Scholar]
- Schmidt R., Hediger M., Nöthiger R., Dübendorfer A. The mutation masculinizer (man) defines a sex-determining gene with maternal and zygotic functions in Musca domestica L. Genetics. 1997 Jan;145(1):173–183. doi: 10.1093/genetics/145.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinmann-Zwicky M. How do germ cells choose their sex? Drosophila as a paradigm. Bioessays. 1992 Aug;14(8):513–518. doi: 10.1002/bies.950140803. [DOI] [PubMed] [Google Scholar]
- Steinmann-Zwicky M., Schmid H., Nöthiger R. Cell-autonomous and inductive signals can determine the sex of the germ line of drosophila by regulating the gene Sxl. Cell. 1989 Apr 7;57(1):157–166. doi: 10.1016/0092-8674(89)90181-5. [DOI] [PubMed] [Google Scholar]
- Sumida M., Nishioka M. A pronounced sex difference when two linked loci of the Japanese brown frog Rana japonica are recombined. Biochem Genet. 1994 Oct;32(9-10):361–369. doi: 10.1007/BF02426898. [DOI] [PubMed] [Google Scholar]
- Szymura J. M. Inheritance of allozyme loci in Bombina: one linkage group established. Biochem Genet. 1995 Jun;33(5-6):167–172. doi: 10.1007/BF00554728. [DOI] [PubMed] [Google Scholar]
- Takase M., Miura I., Nakata A., Takeuchi T., Nishioka M. Cloning and sequencing of the cDNA encoding tyrosinase of the Japanese pond frog, Rana nigromaculata. Gene. 1992 Nov 16;121(2):359–363. doi: 10.1016/0378-1119(92)90144-e. [DOI] [PubMed] [Google Scholar]
- Tanksley S. D., Ganal M. W., Prince J. P., de Vicente M. C., Bonierbale M. W., Broun P., Fulton T. M., Giovannoni J. J., Grandillo S., Martin G. B. High density molecular linkage maps of the tomato and potato genomes. Genetics. 1992 Dec;132(4):1141–1160. doi: 10.1093/genetics/132.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams J. G., Reiter R. S., Young R. M., Scolnik P. A. Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucleic Acids Res. 1993 Jun 11;21(11):2697–2702. doi: 10.1093/nar/21.11.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright D. A., Richards C. M., Frost J. S., Camozzi A. M., Kunz B. J. Genetic mapping in amphibians. Isozymes Curr Top Biol Med Res. 1983;10:287–311. [PubMed] [Google Scholar]
- Wright D. A., Richards C. M., Nace G. W. Inheritance of enzymes and blood proteins in the leopard frog, Rana pipiens: three linkage groups established. Biochem Genet. 1980 Jun;18(5-6):591–616. doi: 10.1007/BF00484404. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Richards C. M. Peptidase isozymes of the leopard frog Rana pipiens: properties and genetics. J Exp Zool. 1982 Jul 1;221(3):283–293. doi: 10.1002/jez.1402210304. [DOI] [PubMed] [Google Scholar]
- Wright D. A., Richards C. M. Two sex-linked loci in the leopard frog, Rana pipiens. Genetics. 1983 Feb;103(2):249–261. doi: 10.1093/genetics/103.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]