Abstract
An important problem in comparative genome analysis has been defining reliable measures of synteny conservation. The published analytical measures of synteny conservation have limitations. Nonindependence of comparisons, conserved and disrupted syntenies that are as yet unidentified, and redundant rearrangements lead to systematic errors that tend to overestimate the degree of conservation. We recently derived methods to estimate the total number of conserved syntenies within the genome, counting both those that have already been described and those that remain to be discovered. With this method, we show that ~65% of the conserved syntenies have already been identified for humans and mice, that rates of synteny disruption vary ~25-fold among mammalian lineages, and that despite strong selection against reciprocal translocations, inter-chromosome rearrangements occurred approximately fourfold more often than inversions and other intra-chromosome rearrangements, at least for lineages leading to humans and mice.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson L., Archibald A., Ashburner M., Audun S., Barendse W., Bitgood J., Bottema C., Broad T., Brown S., Burt D. Comparative genome organization of vertebrates. The First International Workshop on Comparative Genome Organization. Mamm Genome. 1996 Oct;7(10):717–734. doi: 10.1007/s003359900222. [DOI] [PubMed] [Google Scholar]
- Copeland N. G., Jenkins N. A., Gilbert D. J., Eppig J. T., Maltais L. J., Miller J. C., Dietrich W. F., Weaver A., Lincoln S. E., Steen R. G. A genetic linkage map of the mouse: current applications and future prospects. Science. 1993 Oct 1;262(5130):57–66. doi: 10.1126/science.8211130. [DOI] [PubMed] [Google Scholar]
- Disteche C. M., Brannan C. I., Larsen A., Adler D. A., Schorderet D. F., Gearing D., Copeland N. G., Jenkins N. A., Park L. S. The human pseudoautosomal GM-CSF receptor alpha subunit gene is autosomal in mouse. Nat Genet. 1992 Aug;1(5):333–336. doi: 10.1038/ng0892-333. [DOI] [PubMed] [Google Scholar]
- Hannenhalli S., Chappey C., Koonin E. V., Pevzner P. A. Genome sequence comparison and scenarios for gene rearrangements: a test case. Genomics. 1995 Nov 20;30(2):299–311. doi: 10.1006/geno.1995.9873. [DOI] [PubMed] [Google Scholar]
- Lyons L. A., Laughlin T. F., Copeland N. G., Jenkins N. A., Womack J. E., O'Brien S. J. Comparative anchor tagged sequences (CATS) for integrative mapping of mammalian genomes. Nat Genet. 1997 Jan;15(1):47–56. doi: 10.1038/ng0197-47. [DOI] [PubMed] [Google Scholar]
- Nadeau J. H., Grant P. L., Mankala S., Reiner A. H., Richardson J. E., Eppig J. T. A Rosetta stone of mammalian genetics. Nature. 1995 Jan 26;373(6512):363–365. doi: 10.1038/373363a0. [DOI] [PubMed] [Google Scholar]
- Nadeau J. H. Maps of linkage and synteny homologies between mouse and man. Trends Genet. 1989 Mar;5(3):82–86. doi: 10.1016/0168-9525(89)90031-0. [DOI] [PubMed] [Google Scholar]
- Nadeau J. H., Taylor B. A. Lengths of chromosomal segments conserved since divergence of man and mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(3):814–818. doi: 10.1073/pnas.81.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer S., Perry J., Ashworth A. A contravention of Ohno's law in mice. Nat Genet. 1995 Aug;10(4):472–476. doi: 10.1038/ng0895-472. [DOI] [PubMed] [Google Scholar]
- Rettenberger G., Klett C., Zechner U., Kunz J., Vogel W., Hameister H. Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics. 1995 Mar 20;26(2):372–378. doi: 10.1016/0888-7543(95)80222-8. [DOI] [PubMed] [Google Scholar]
- Ried T., Arnold N., Ward D. C., Wienberg J. Comparative high-resolution mapping of human and primate chromosomes by fluorescence in situ hybridization. Genomics. 1993 Nov;18(2):381–386. doi: 10.1006/geno.1993.1479. [DOI] [PubMed] [Google Scholar]
- Rugarli E. I., Adler D. A., Borsani G., Tsuchiya K., Franco B., Hauge X., Disteche C., Chapman V., Ballabio A. Different chromosomal localization of the Clcn4 gene in Mus spretus and C57BL/6J mice. Nat Genet. 1995 Aug;10(4):466–471. doi: 10.1038/ng0895-466. [DOI] [PubMed] [Google Scholar]
- Sankoff D. Analytical approaches to genomic evolution. Biochimie. 1993;75(5):409–413. doi: 10.1016/0300-9084(93)90174-q. [DOI] [PubMed] [Google Scholar]
- Sankoff D., Leduc G., Antoine N., Paquin B., Lang B. F., Cedergren R. Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6575–6579. doi: 10.1073/pnas.89.14.6575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sarich V. M., Wilson A. C. Immunological time scale for hominid evolution. Science. 1967 Dec 1;158(3805):1200–1203. doi: 10.1126/science.158.3805.1200. [DOI] [PubMed] [Google Scholar]
- Scherthan H., Cremer T., Arnason U., Weier H. U., Lima-de-Faria A., Frönicke L. Comparative chromosome painting discloses homologous segments in distantly related mammals. Nat Genet. 1994 Apr;6(4):342–347. doi: 10.1038/ng0494-342. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Sarich V. M., Maxson L. R. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3028–3030. doi: 10.1073/pnas.71.8.3028. [DOI] [PMC free article] [PubMed] [Google Scholar]
