Skip to main content
Genetics logoLink to Genetics
. 1997 Oct;147(2):597–608. doi: 10.1093/genetics/147.2.597

Characterization of Revertants of Unc-93(e1500) in Caenorhabditis Elegans Induced by N-Ethyl-N-Nitrosourea

E De Stasio 1, C Lephoto 1, L Azuma 1, C Holst 1, D Stanislaus 1, J Uttam 1
PMCID: PMC1208182  PMID: 9335597

Abstract

Phenotypic reversion of the rubber-band, muscle-defective phenotype conferred by unc-93(e1500) was used to determine the utility of N-ethyl-N-nitrosourea (ENU) as a mutagen for genetic research in Caenorhabditis elegans. In this system, ENU produces revertants at a frequency of 3 X 10(-4), equivalent to that of the commonly used mutagen, EMS. The gene identity of 154 ENU-induced revertants shows that the distribution of alleles between three possible suppressor genes differs from that induced by EMS. A higher percentage of revertants are alleles of unc-93 and many fewer are alleles of sup-9 and sup-10. Three revertants complement the three known suppressor genes; they may therefore identify a new gene product(s) involved in this system of excitation-contraction coupling in C. elegans. Molecular characterization of putative unc-93 null alleles reveals that the base changes induced by ENU are quite different from those induced by EMS; specifically we see an increased frequency of A/T -> G/C transitions. The frequency of ENU-induced intragenic deletions is found to be 13%. We suggest that ENU, at concentrations below 5 mM, will be a superior mutagen for studies of protein function in C. elegans.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aroian R. V., Levy A. D., Koga M., Ohshima Y., Kramer J. M., Sternberg P. W. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site. Mol Cell Biol. 1993 Jan;13(1):626–637. doi: 10.1128/mcb.13.1.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beranek D. T. Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res. 1990 Jul;231(1):11–30. doi: 10.1016/0027-5107(90)90173-2. [DOI] [PubMed] [Google Scholar]
  3. Beranek D. T., Weis C. C., Swenson D. H. A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis. 1980 Jul;1(7):595–606. doi: 10.1093/carcin/1.7.595. [DOI] [PubMed] [Google Scholar]
  4. Forrest S., Cotton R., Landegren U., Southern E. How to find all those mutations. Nat Genet. 1995 Aug;10(4):375–376. doi: 10.1038/ng0895-375. [DOI] [PubMed] [Google Scholar]
  5. Fossett N. G., Arbour-Reily P., Kilroy G., McDaniel M., Mahmoud J., Tucker A. B., Chang S. H., Lee W. R. Analysis of ENU-induced mutations at the Adh locus in Drosophila melanogaster. Mutat Res. 1990 Jul;231(1):73–85. doi: 10.1016/0027-5107(90)90178-7. [DOI] [PubMed] [Google Scholar]
  6. Glavac D., Dean M. Optimization of the single-strand conformation polymorphism (SSCP) technique for detection of point mutations. Hum Mutat. 1993;2(5):404–414. doi: 10.1002/humu.1380020513. [DOI] [PubMed] [Google Scholar]
  7. Greenwald I. S., Horvitz H. R. Dominant suppressors of a muscle mutant define an essential gene of Caenorhabditis elegans. Genetics. 1982 Jun;101(2):211–225. doi: 10.1093/genetics/101.2.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenwald I., Horvitz H. R. A visible allele of the muscle gene sup-10X of C. elegans. Genetics. 1986 May;113(1):63–72. doi: 10.1093/genetics/113.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guttenplan J. B. Mutagenesis by N-nitroso compounds: relationships to DNA adducts, DNA repair, and mutational efficiencies. Mutat Res. 1990 Nov-Dec;233(1-2):177–187. doi: 10.1016/0027-5107(90)90161-v. [DOI] [PubMed] [Google Scholar]
  10. Hodgkin J. Genetic nomenclature guide. Caenorhabditis elegans. Trends Genet. 1995 Mar;:24–25. [PubMed] [Google Scholar]
  11. Hongyo T., Buzard G. S., Calvert R. J., Weghorst C. M. 'Cold SSCP': a simple, rapid and non-radioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res. 1993 Aug 11;21(16):3637–3642. doi: 10.1093/nar/21.16.3637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  13. Lacy L. R., Eisenberg M. T., Osgood C. J. Molecular analysis of chemically-induced mutations at the RpII215 locus of Drosophila melanogaster. Mutat Res. 1986 Aug;162(1):47–54. doi: 10.1016/0027-5107(86)90070-9. [DOI] [PubMed] [Google Scholar]
  14. Leren T. P., Solberg K., Rødningen O. K., Ose L., Tonstad S., Berg K. Evaluation of running conditions for SSCP analysis: application of SSCP for detection of point mutations in the LDL receptor gene. PCR Methods Appl. 1993 Dec;3(3):159–162. doi: 10.1101/gr.3.3.159. [DOI] [PubMed] [Google Scholar]
  15. Levin J. Z., Horvitz H. R. The Caenorhabditis elegans unc-93 gene encodes a putative transmembrane protein that regulates muscle contraction. J Cell Biol. 1992 Apr;117(1):143–155. doi: 10.1083/jcb.117.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mullins M. C., Hammerschmidt M., Haffter P., Nüsslein-Volhard C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol. 1994 Mar 1;4(3):189–202. doi: 10.1016/s0960-9822(00)00048-8. [DOI] [PubMed] [Google Scholar]
  17. Musarrat J., Arezina-Wilson J., Wani A. A. Repair of base alkylation damage in targeted restriction endonuclease sequences of plasmid DNA. Biochim Biophys Acta. 1995 Sep 19;1263(3):201–211. doi: 10.1016/0167-4781(95)00098-2. [DOI] [PubMed] [Google Scholar]
  18. Pastink A., Heemskerk E., Nivard M. J., van Vliet C. J., Vogel E. W. Mutational specificity of ethyl methanesulfonate in excision-repair-proficient and -deficient strains of Drosophila melanogaster. Mol Gen Genet. 1991 Oct;229(2):213–218. doi: 10.1007/BF00272158. [DOI] [PubMed] [Google Scholar]
  19. Pastink A., Vreeken C., Vogel E. W. The nature of N-ethyl-N-nitrosourea-induced mutations at the white locus of Drosophila melanogaster. Mutat Res. 1988 May;199(1):47–53. doi: 10.1016/0027-5107(88)90229-1. [DOI] [PubMed] [Google Scholar]
  20. Pulak R. A., Anderson P. Structures of spontaneous deletions in Caenorhabditis elegans. Mol Cell Biol. 1988 Sep;8(9):3748–3754. doi: 10.1128/mcb.8.9.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pulak R., Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993 Oct;7(10):1885–1897. doi: 10.1101/gad.7.10.1885. [DOI] [PubMed] [Google Scholar]
  22. Saffhill R., Margison G. P., O'Connor P. J. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta. 1985 Dec 17;823(2):111–145. doi: 10.1016/0304-419x(85)90009-5. [DOI] [PubMed] [Google Scholar]
  23. Singer B. All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature. 1976 Nov 25;264(5584):333–339. doi: 10.1038/264333a0. [DOI] [PubMed] [Google Scholar]
  24. Singer B. In vivo formation and persistence of modified nucleosides resulting from alkylating agents. Environ Health Perspect. 1985 Oct;62:41–48. doi: 10.1289/ehp.856241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Skopek T. R., Walker V. E., Cochrane J. E., Craft T. R., Cariello N. F. Mutational spectrum at the Hprt locus in splenic T cells of B6C3F1 mice exposed to N-ethyl-N-nitrosourea. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7866–7870. doi: 10.1073/pnas.89.17.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thomale J., Hochleitner K., Rajewsky M. F. Differential formation and repair of the mutagenic DNA alkylation product O6-ethylguanine in transcribed and nontranscribed genes of the rat. J Biol Chem. 1994 Jan 21;269(3):1681–1686. [PubMed] [Google Scholar]
  27. Tong S. W., Elzinga M. The sequence of the NH2-terminal 204-residue fragment of the heavy chain of rabbit skeletal muscle myosin. J Biol Chem. 1983 Nov 10;258(21):13100–13110. [PubMed] [Google Scholar]
  28. Ushijima T., Hosoya Y., Suzuki T., Sofuni T., Sugimura T., Nagao M. A rapid method for detection of mutations in the lacI gene using PCR-single strand conformation polymorphism analysis: demonstration of its high sensitivity. Mutat Res. 1995 Jun;334(3):283–292. doi: 10.1016/0165-1161(95)90065-9. [DOI] [PubMed] [Google Scholar]
  29. Warrick H. M., Spudich J. A. Myosin structure and function in cell motility. Annu Rev Cell Biol. 1987;3:379–421. doi: 10.1146/annurev.cb.03.110187.002115. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES