Skip to main content
Genetics logoLink to Genetics
. 1997 Oct;147(2):725–741. doi: 10.1093/genetics/147.2.725

Splice-Junction Elements and Intronic Sequences Regulate Alternative Splicing of the Drosophila Myosin Heavy Chain Gene Transcript

D M Standiford 1, M B Davis 1, W Sun 1, C P Emerson-Jr 1
PMCID: PMC1208193  PMID: 9335608

Abstract

The Drosophila muscle myosin heavy chain (Mhc) gene primary transcript contains five alternatively spliced exon groups (exons 3, 7, 9, 11 and 15), each of which contains two to five mutually exclusive members. Individual muscles typically select a specific alternative exon from each group for incorporation into the processed message. We report here on the cis-regulatory mechanisms that direct the processing of alternative exons in Mhc exon 11 in individual muscles using transgenic reporter constructs, RT-PCR and directed mutagenesis. The 6.0-kilobase exon 11 domain is sufficient to direct the correct processing of exon 11 alternatives, demonstrating that the alternative splicing cis-regulatory elements are local to Mhc exon 11. Mutational analysis of Mhc exon 11 reveals that the alternative exon nonconsensus 5'-splice donors are essential for alternative splicing regulation in general, but do not specify alternative exons for inclusion in individual muscles. Rather, we show, through exon substitutions and deletion analyses, that a 360-nucleotide intronic domain precisely directs the normal processing of one exon, Mhc exon 11e, in the indirect flight muscle. These and other data indicate that alternative exons are regulated in appropriate muscles through interactions between intronic alternative splice-specificity elements, nonconsensus exon 11 splice donors and, likely, novel exon-specific alternative splicing factors.

Full Text

The Full Text of this article is available as a PDF (11.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abmayr S. M., Erickson M. S., Bour B. A. Embryonic development of the larval body wall musculature of Drosophila melanogaster. Trends Genet. 1995 Apr;11(4):153–159. doi: 10.1016/s0168-9525(00)89030-7. [DOI] [PubMed] [Google Scholar]
  2. Bandman E. Contractile protein isoforms in muscle development. Dev Biol. 1992 Dec;154(2):273–283. doi: 10.1016/0012-1606(92)90067-q. [DOI] [PubMed] [Google Scholar]
  3. Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  4. Bernstein S. I., Mogami K., Donady J. J., Emerson C. P., Jr Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. 1983 Mar 31-Apr 6Nature. 302(5907):393–397. doi: 10.1038/302393a0. [DOI] [PubMed] [Google Scholar]
  5. Bernstein S. I., O'Donnell P. T., Cripps R. M. Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol. 1993;143:63–152. doi: 10.1016/s0074-7696(08)61874-4. [DOI] [PubMed] [Google Scholar]
  6. Beverley S. M., Wilson A. C. Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol. 1984;21(1):1–13. doi: 10.1007/BF02100622. [DOI] [PubMed] [Google Scholar]
  7. Bray S. J., Hirsh J. The Drosophila virilis dopa decarboxylase gene is developmentally regulated when integrated into Drosophila melanogaster. EMBO J. 1986 Sep;5(9):2305–2311. doi: 10.1002/j.1460-2075.1986.tb04498.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chabot B. Directing alternative splicing: cast and scenarios. Trends Genet. 1996 Nov;12(11):472–478. doi: 10.1016/0168-9525(96)10037-8. [DOI] [PubMed] [Google Scholar]
  9. Clackson T., Winter G. 'Sticky feet'-directed mutagenesis and its application to swapping antibody domains. Nucleic Acids Res. 1989 Dec 25;17(24):10163–10170. doi: 10.1093/nar/17.24.10163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clouet d'Orval B., d'Aubenton Carafa Y., Sirand-Pugnet P., Gallego M., Brody E., Marie J. RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science. 1991 Jun 28;252(5014):1823–1828. doi: 10.1126/science.2063195. [DOI] [PubMed] [Google Scholar]
  11. Csank C., Taylor F. M., Martindale D. W. Nuclear pre-mRNA introns: analysis and comparison of intron sequences from Tetrahymena thermophila and other eukaryotes. Nucleic Acids Res. 1990 Sep 11;18(17):5133–5141. doi: 10.1093/nar/18.17.5133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cáceres J. F., Stamm S., Helfman D. M., Krainer A. R. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science. 1994 Sep 16;265(5179):1706–1709. doi: 10.1126/science.8085156. [DOI] [PubMed] [Google Scholar]
  13. Dear S., Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991 Jul 25;19(14):3907–3911. doi: 10.1093/nar/19.14.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Emerson C. P., Jr Skeletal myogenesis: genetics and embryology to the fore. Curr Opin Genet Dev. 1993 Apr;3(2):265–274. doi: 10.1016/0959-437x(93)90033-l. [DOI] [PubMed] [Google Scholar]
  15. Epstein H. F., Bernstein S. I. Genetic approaches to understanding muscle development. Dev Biol. 1992 Dec;154(2):231–244. doi: 10.1016/0012-1606(92)90064-n. [DOI] [PubMed] [Google Scholar]
  16. Fyrberg E., Beall C. Genetic approaches to myofibril form and function in Drosophila. Trends Genet. 1990 Apr;6(4):126–131. doi: 10.1016/0168-9525(90)90127-r. [DOI] [PubMed] [Google Scholar]
  17. George E. L., Ober M. B., Emerson C. P., Jr Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol. 1989 Jul;9(7):2957–2974. doi: 10.1128/mcb.9.7.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harridge S. D., Bottinelli R., Canepari M., Pellegrino M. A., Reggiani C., Esbjörnsson M., Saltin B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch. 1996 Sep;432(5):913–920. doi: 10.1007/s004240050215. [DOI] [PubMed] [Google Scholar]
  19. Hastings G. A., Emerson C. P., Jr Myosin functional domains encoded by alternative exons are expressed in specific thoracic muscles of Drosophila. J Cell Biol. 1991 Jul;114(2):263–276. doi: 10.1083/jcb.114.2.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heinrichs V., Baker B. S. In vivo analysis of the functional domains of the Drosophila splicing regulator RBP1. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):115–120. doi: 10.1073/pnas.94.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hertel K. J., Lynch K. W., Hsiao E. C., Liu E. H., Maniatis T. Structural and functional conservation of the Drosophila doublesex splicing enhancer repeat elements. RNA. 1996 Oct;2(10):969–981. [PMC free article] [PubMed] [Google Scholar]
  22. Hodges D., Bernstein S. I. Genetic and biochemical analysis of alternative RNA splicing. Adv Genet. 1994;31:207–281. doi: 10.1016/s0065-2660(08)60399-5. [DOI] [PubMed] [Google Scholar]
  23. Hodges D., Bernstein S. I. Suboptimal 5' and 3' splice sites regulate alternative splicing of Drosophila melanogaster myosin heavy chain transcripts in vitro. Mech Dev. 1992 May;37(3):127–140. doi: 10.1016/0925-4773(92)90075-u. [DOI] [PubMed] [Google Scholar]
  24. Huh G. S., Hynes R. O. Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev. 1994 Jul 1;8(13):1561–1574. doi: 10.1101/gad.8.13.1561. [DOI] [PubMed] [Google Scholar]
  25. Kraus M. E., Lis J. T. The concentration of B52, an essential splicing factor and regulator of splice site choice in vitro, is critical for Drosophila development. Mol Cell Biol. 1994 Aug;14(8):5360–5370. doi: 10.1128/mcb.14.8.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kronert W. A., Edwards K. A., Roche E. S., Wells L., Bernstein S. I. Muscle-specific accumulation of Drosophila myosin heavy chains: a splicing mutation in an alternative exon results in an isoform substitution. EMBO J. 1991 Sep;10(9):2479–2488. doi: 10.1002/j.1460-2075.1991.tb07787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Libri D., Piseri A., Fiszman M. Y. Tissue-specific splicing in vivo of the beta-tropomyosin gene: dependence on an RNA secondary structure. Science. 1991 Jun 28;252(5014):1842–1845. doi: 10.1126/science.2063196. [DOI] [PubMed] [Google Scholar]
  28. Lynch K. W., Maniatis T. Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev. 1995 Feb 1;9(3):284–293. doi: 10.1101/gad.9.3.284. [DOI] [PubMed] [Google Scholar]
  29. Manley J. L., Tacke R. SR proteins and splicing control. Genes Dev. 1996 Jul 1;10(13):1569–1579. doi: 10.1101/gad.10.13.1569. [DOI] [PubMed] [Google Scholar]
  30. Mayeda A., Helfman D. M., Krainer A. R. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol Cell Biol. 1993 May;13(5):2993–3001. doi: 10.1128/mcb.13.5.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mayeda A., Krainer A. R. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell. 1992 Jan 24;68(2):365–375. doi: 10.1016/0092-8674(92)90477-t. [DOI] [PubMed] [Google Scholar]
  32. McCullough A. J., Schuler M. A. AU-rich intronic elements affect pre-mRNA 5' splice site selection in Drosophila melanogaster. Mol Cell Biol. 1993 Dec;13(12):7689–7697. doi: 10.1128/mcb.13.12.7689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miedema K., Hanske M., Akhmanova A., Bindels P., Hennig W. Minor-myosin, a novel myosin isoform synthesized preferentially in Drosophila testis is encoded by the muscle myosin heavy chain gene. Mech Dev. 1995 May;51(1):67–81. doi: 10.1016/0925-4773(95)00356-6. [DOI] [PubMed] [Google Scholar]
  34. Miedema K., Harhangi H., Mentzel S., Wilbrink M., Akhmanova A., Hooiveld M., Bindels P., Hennig W. Interspecific sequence comparison of the muscle-myosin heavy-chain genes from Drosophila hydei and Drosophila melanogaster. J Mol Evol. 1994 Oct;39(4):357–368. doi: 10.1007/BF00160268. [DOI] [PubMed] [Google Scholar]
  35. Mogami K., O'Donnell P. T., Bernstein S. I., Wright T. R., Emerson C. P., Jr Mutations of the Drosophila myosin heavy-chain gene: effects on transcription, myosin accumulation, and muscle function. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1393–1397. doi: 10.1073/pnas.83.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mount S. M., Burks C., Hertz G., Stormo G. D., White O., Fields C. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 1992 Aug 25;20(16):4255–4262. doi: 10.1093/nar/20.16.4255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ramchatesingh J., Zahler A. M., Neugebauer K. M., Roth M. B., Cooper T. A. A subset of SR proteins activates splicing of the cardiac troponin T alternative exon by direct interactions with an exonic enhancer. Mol Cell Biol. 1995 Sep;15(9):4898–4907. doi: 10.1128/mcb.15.9.4898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev. 1996 Apr;6(2):215–220. doi: 10.1016/s0959-437x(96)80053-0. [DOI] [PubMed] [Google Scholar]
  39. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roberts G. C., Gooding C., Smith C. W. Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene. EMBO J. 1996 Nov 15;15(22):6301–6310. [PMC free article] [PubMed] [Google Scholar]
  41. Ryan K. J., Cooper T. A. Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol. 1996 Aug;16(8):4014–4023. doi: 10.1128/mcb.16.8.4014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schiaffino S., Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996 Apr;76(2):371–423. doi: 10.1152/physrev.1996.76.2.371. [DOI] [PubMed] [Google Scholar]
  43. Sun Q., Mayeda A., Hampson R. K., Krainer A. R., Rottman F. M. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 1993 Dec;7(12B):2598–2608. doi: 10.1101/gad.7.12b.2598. [DOI] [PubMed] [Google Scholar]
  44. Thackeray J. R., Ganetzky B. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics. 1995 Sep;141(1):203–214. doi: 10.1093/genetics/141.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]
  46. Xu R., Teng J., Cooper T. A. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol. 1993 Jun;13(6):3660–3674. doi: 10.1128/mcb.13.6.3660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zaret K. S., Liu J. K., DiPersio C. M. Site-directed mutagenesis reveals a liver transcription factor essential for the albumin transcriptional enhancer. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5469–5473. doi: 10.1073/pnas.87.14.5469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zhang L., Ashiya M., Sherman T. G., Grabowski P. J. Essential nucleotides direct neuron-specific splicing of gamma 2 pre-mRNA. RNA. 1996 Jul;2(7):682–698. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES