Abstract
The mouse Fused locus encodes a protein that has been implicated in the regulation of embryonic axis formation. The protein, which has been named Axin to distinguish it from the product of the unrelated Drosophila melanogaster gene fused, contains regions of similarity to the RGS (regulators of G-protein signaling) family of proteins as well as to dishevelled, a protein that acts downstream of Wingless in D. melanogaster. Loss-of-function mutations at Fused lead to lethality between days 8 and 10 of gestation. Three dominant mutations result in a kinked tail in heterozygotes. Two of the dominant mutations, Fused and Knobbly, result from insertions of intracisternal A particle retrotransposons into the gene. The insertion in Fused, within the sixth intron, creates a gene that produces wild-type transcripts as well as mutant transcripts that initiate at both the authentic promoter and the 3'-most long terminal repeat of the insertion. Knobbly, an insertion of the retrotransposon into exon 7, precludes the production of wild-type protein. Thus the Fused homozygote is viable whereas Knobbly is a recessive embryonic lethal. In both mutants the dominant kink-tailed phenotype is likely to result from the synthesis of similar amino-terminal fragments of Axin protein that would contain the RGS domain, but lack the dishevelled domain.
Full Text
The Full Text of this article is available as a PDF (4.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen N. D., Norris M. L., Surani M. A. Epigenetic control of transgene expression and imprinting by genotype-specific modifiers. Cell. 1990 Jun 1;61(5):853–861. doi: 10.1016/0092-8674(90)90195-k. [DOI] [PubMed] [Google Scholar]
- Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
- Chan R. K., Otte C. A. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol Cell Biol. 1982 Jan;2(1):21–29. doi: 10.1128/mcb.2.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Christy R. J., Huang R. C. Functional analysis of the long terminal repeats of intracisternal A-particle genes: sequences within the U3 region determine both the efficiency and direction of promoter activity. Mol Cell Biol. 1988 Mar;8(3):1093–1102. doi: 10.1128/mcb.8.3.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deol M. S. The probable mode of gene action in the circling mutants of the mouse. Genet Res. 1966 Jun;7(3):363–371. doi: 10.1017/s0016672300009812. [DOI] [PubMed] [Google Scholar]
- Dietzel C., Kurjan J. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol Cell Biol. 1987 Dec;7(12):4169–4177. doi: 10.1128/mcb.7.12.4169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duhl D. M., Vrieling H., Miller K. A., Wolff G. L., Barsh G. S. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994 Sep;8(1):59–65. doi: 10.1038/ng0994-59. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
- Greco T. L., Takada S., Newhouse M. M., McMahon J. A., McMahon A. P., Camper S. A. Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 1996 Feb 1;10(3):313–324. doi: 10.1101/gad.10.3.313. [DOI] [PubMed] [Google Scholar]
- Hadchouel M., Farza H., Simon D., Tiollais P., Pourcel C. Maternal inhibition of hepatitis B surface antigen gene expression in transgenic mice correlates with de novo methylation. Nature. 1987 Oct 1;329(6138):454–456. doi: 10.1038/329454a0. [DOI] [PubMed] [Google Scholar]
- Herrmann B. G., Labeit S., Poustka A., King T. R., Lehrach H. Cloning of the T gene required in mesoderm formation in the mouse. Nature. 1990 Feb 15;343(6259):617–622. doi: 10.1038/343617a0. [DOI] [PubMed] [Google Scholar]
- Klingensmith J., Nusse R., Perrimon N. The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 1994 Jan;8(1):118–130. doi: 10.1101/gad.8.1.118. [DOI] [PubMed] [Google Scholar]
- Koelle M. R., Horvitz H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell. 1996 Jan 12;84(1):115–125. doi: 10.1016/s0092-8674(00)80998-8. [DOI] [PubMed] [Google Scholar]
- Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol. 1989 Nov;9(11):5134–5142. doi: 10.1128/mcb.9.11.5134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamb B. T., Satyamoorthy K., Li L., Solter D., Howe C. C. CpG methylation of an endogenous retroviral enhancer inhibits transcription factor binding and activity. Gene Expr. 1991;1(3):185–196. [PMC free article] [PubMed] [Google Scholar]
- MacMurray A., Shin H. S. The antimorphic nature of the Tc allele at the mouse T locus. Genetics. 1988 Oct;120(2):545–550. doi: 10.1093/genetics/120.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaud E. J., van Vugt M. J., Bultman S. J., Sweet H. O., Davisson M. T., Woychik R. P. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 1994 Jun 15;8(12):1463–1472. doi: 10.1101/gad.8.12.1463. [DOI] [PubMed] [Google Scholar]
- Mietz J. A., Grossman Z., Lueders K. K., Kuff E. L. Nucleotide sequence of a complete mouse intracisternal A-particle genome: relationship to known aspects of particle assembly and function. J Virol. 1987 Oct;61(10):3020–3029. doi: 10.1128/jvi.61.10.3020-3029.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noordermeer J., Klingensmith J., Perrimon N., Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature. 1994 Jan 6;367(6458):80–83. doi: 10.1038/367080a0. [DOI] [PubMed] [Google Scholar]
- Perry W. L., 3rd, Vasicek T. J., Lee J. J., Rossi J. M., Zeng L., Zhang T., Tilghman S. M., Costantini F. Phenotypic and molecular analysis of a transgenic insertional allele of the mouse Fused locus. Genetics. 1995 Sep;141(1):321–332. doi: 10.1093/genetics/141.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reed S C. The Inheritance and Expression of Fused, a New Mutation in the House Mouse. Genetics. 1937 Jan;22(1):1–13. doi: 10.1093/genetics/22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reik W., Collick A., Norris M. L., Barton S. C., Surani M. A. Genomic imprinting determines methylation of parental alleles in transgenic mice. Nature. 1987 Jul 16;328(6127):248–251. doi: 10.1038/328248a0. [DOI] [PubMed] [Google Scholar]
- Rossi J. M., Chen H., Tilghman S. M. Genetic map of the fused locus on mouse chromosome 17. Genomics. 1994 Sep 1;23(1):178–184. doi: 10.1006/geno.1994.1475. [DOI] [PubMed] [Google Scholar]
- Ruvinsky A. O., Agulnik A. I. Gametic imprinting and the manifestation of the fused gene in the house mouse. Dev Genet. 1990;11(4):263–269. doi: 10.1002/dvg.1020110404. [DOI] [PubMed] [Google Scholar]
- Ruvinsky A., Agulnik A., Agulnik S., Rogachova M. Functional analysis of mutations of murine chromosome 17 with the use of tertiary trisomy. Genetics. 1991 Apr;127(4):781–788. doi: 10.1093/genetics/127.4.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanford J. P., Clark H. J., Chapman V. M., Rossant J. Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse. Genes Dev. 1987 Dec;1(10):1039–1046. doi: 10.1101/gad.1.10.1039. [DOI] [PubMed] [Google Scholar]
- Sapienza C., Peterson A. C., Rossant J., Balling R. Degree of methylation of transgenes is dependent on gamete of origin. Nature. 1987 Jul 16;328(6127):251–254. doi: 10.1038/328251a0. [DOI] [PubMed] [Google Scholar]
- Sasaki H., Hamada T., Ueda T., Seki R., Higashinakagawa T., Sakaki Y. Inherited type of allelic methylation variations in a mouse chromosome region where an integrated transgene shows methylation imprinting. Development. 1991 Feb;111(2):573–581. doi: 10.1242/dev.111.2.573. [DOI] [PubMed] [Google Scholar]
- Stott D., Kispert A., Herrmann B. G. Rescue of the tail defect of Brachyury mice. Genes Dev. 1993 Feb;7(2):197–203. doi: 10.1101/gad.7.2.197. [DOI] [PubMed] [Google Scholar]
- Sutherland H. F., Pick E., Francis F., Lehrach H., Frischauf A. M. Mapping around the Fused locus on mouse chromosome 17. Mamm Genome. 1995 Jul;6(7):449–453. doi: 10.1007/BF00360652. [DOI] [PubMed] [Google Scholar]
- Tam P. P., Tan S. S. The somitogenetic potential of cells in the primitive streak and the tail bud of the organogenesis-stage mouse embryo. Development. 1992 Jul;115(3):703–715. doi: 10.1242/dev.115.3.703. [DOI] [PubMed] [Google Scholar]
- Theisen H., Purcell J., Bennett M., Kansagara D., Syed A., Marsh J. L. dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development. 1994 Feb;120(2):347–360. doi: 10.1242/dev.120.2.347. [DOI] [PubMed] [Google Scholar]
- Ueda T., Yamazaki K., Suzuki R., Fujimoto H., Sasaki H., Sakaki Y., Higashinakagawa T. Parental methylation patterns of a transgenic locus in adult somatic tissues are imprinted during gametogenesis. Development. 1992 Dec;116(4):831–839. doi: 10.1242/dev.116.4.831. [DOI] [PubMed] [Google Scholar]
- Zeng L., Fagotto F., Zhang T., Hsu W., Vasicek T. J., Perry W. L., 3rd, Lee J. J., Tilghman S. M., Gumbiner B. M., Costantini F. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell. 1997 Jul 11;90(1):181–192. doi: 10.1016/s0092-8674(00)80324-4. [DOI] [PubMed] [Google Scholar]