Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):1139–1153. doi: 10.1093/genetics/147.3.1139

Dominant Enhancers of Egfr in Drosophila Melanogaster: Genetic Links between the Notch and Egfr Signaling Pathways

J V Price 1, E D Savenye 1, D Lum 1, A Breitkreutz 1
PMCID: PMC1208239  PMID: 9383058

Abstract

The Drosophila epidermal growth factor receptor (EGFR) is a key component of a complex signaling pathway that participates in multiple developmental processes. We have performed an F(1) screen for mutations that cause dominant enhancement of wing vein phenotypes associated with mutations in Egfr. With this screen, we have recovered mutations in Hairless (H), vein, groucho (gro), and three apparently novel loci. All of the E(Egfr)s we have identified show dominant interactions in transheterozygous combinations with each other and with alleles of N or Su(H), suggesting that they are involved in cross-talk between the N and EGFR signaling pathways. Further examination of the phenotypic interactions between Egfr, H, and gro revealed that reductions in Egfr activity enhanced both the bristle loss associated with H mutations, and the bristle hyperplasia and ocellar hypertrophy associated with gro mutations. Double mutant combinations of Egfr and gro hypomorphic alleles led to the formation of ectopic compound eyes in a dosage sensitive manner. Our findings suggest that these E(Egfr)s represent links between the Egfr and Notch signaling pathways, and that Egfr activity can either promote or suppress Notch signaling, depending on its developmental context.

Full Text

The Full Text of this article is available as a PDF (6.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey A. M., Posakony J. W. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 1995 Nov 1;9(21):2609–2622. doi: 10.1101/gad.9.21.2609. [DOI] [PubMed] [Google Scholar]
  2. Baker N. E., Rubin G. M. Effect on eye development of dominant mutations in Drosophila homologue of the EGF receptor. Nature. 1989 Jul 13;340(6229):150–153. doi: 10.1038/340150a0. [DOI] [PubMed] [Google Scholar]
  3. Bang A. G., Bailey A. M., Posakony J. W. Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway. Dev Biol. 1995 Dec;172(2):479–494. doi: 10.1006/dbio.1995.8033. [DOI] [PubMed] [Google Scholar]
  4. Bang A. G., Hartenstein V., Posakony J. W. Hairless is required for the development of adult sensory organ precursor cells in Drosophila. Development. 1991 Jan;111(1):89–104. doi: 10.1242/dev.111.1.89. [DOI] [PubMed] [Google Scholar]
  5. Bender L. B., Kooh P. J., Muskavitch M. A. Complex function and expression of Delta during Drosophila oogenesis. Genetics. 1993 Apr;133(4):967–978. doi: 10.1093/genetics/133.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brou C., Logeat F., Lecourtois M., Vandekerckhove J., Kourilsky P., Schweisguth F., Israël A. Inhibition of the DNA-binding activity of Drosophila suppressor of hairless and of its human homolog, KBF2/RBP-J kappa, by direct protein-protein interaction with Drosophila hairless. Genes Dev. 1994 Oct 15;8(20):2491–2503. doi: 10.1101/gad.8.20.2491. [DOI] [PubMed] [Google Scholar]
  7. Brunner D., Oellers N., Szabad J., Biggs W. H., 3rd, Zipursky S. L., Hafen E. A gain-of-function mutation in Drosophila MAP kinase activates multiple receptor tyrosine kinase signaling pathways. Cell. 1994 Mar 11;76(5):875–888. doi: 10.1016/0092-8674(94)90362-x. [DOI] [PubMed] [Google Scholar]
  8. Clifford R. J., Schüpbach T. Coordinately and differentially mutable activities of torpedo, the Drosophila melanogaster homolog of the vertebrate EGF receptor gene. Genetics. 1989 Dec;123(4):771–787. doi: 10.1093/genetics/123.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clifford R., Schüpbach T. The torpedo (DER) receptor tyrosine kinase is required at multiple times during Drosophila embryogenesis. Development. 1992 Jul;115(3):853–872. doi: 10.1242/dev.115.3.853. [DOI] [PubMed] [Google Scholar]
  10. Cline T. W. Two closely linked mutations in Drosophila melanogaster that are lethal to opposite sexes and interact with daughterless. Genetics. 1978 Dec;90(4):683–698. doi: 10.1093/genetics/90.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Daub H., Weiss F. U., Wallasch C., Ullrich A. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature. 1996 Feb 8;379(6565):557–560. doi: 10.1038/379557a0. [DOI] [PubMed] [Google Scholar]
  12. Diaz-Benjumea F. J., Hafen E. The sevenless signalling cassette mediates Drosophila EGF receptor function during epidermal development. Development. 1994 Mar;120(3):569–578. doi: 10.1242/dev.120.3.569. [DOI] [PubMed] [Google Scholar]
  13. Doyle H. J., Bishop J. M. Torso, a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev. 1993 Apr;7(4):633–646. doi: 10.1101/gad.7.4.633. [DOI] [PubMed] [Google Scholar]
  14. Duffy J. B., Perrimon N. The torso pathway in Drosophila: lessons on receptor tyrosine kinase signaling and pattern formation. Dev Biol. 1994 Dec;166(2):380–395. doi: 10.1006/dbio.1994.1324. [DOI] [PubMed] [Google Scholar]
  15. Freeman M. Cell determination strategies in the Drosophila eye. Development. 1997 Jan;124(2):261–270. doi: 10.1242/dev.124.2.261. [DOI] [PubMed] [Google Scholar]
  16. Freeman M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell. 1996 Nov 15;87(4):651–660. doi: 10.1016/s0092-8674(00)81385-9. [DOI] [PubMed] [Google Scholar]
  17. Freeman M. The spitz gene is required for photoreceptor determination in the Drosophila eye where it interacts with the EGF receptor. Mech Dev. 1994 Oct;48(1):25–33. doi: 10.1016/0925-4773(94)90003-5. [DOI] [PubMed] [Google Scholar]
  18. González-Reyes A., Elliott H., St Johnston D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature. 1995 Jun 22;375(6533):654–658. doi: 10.1038/375654a0. [DOI] [PubMed] [Google Scholar]
  19. Goode S., Wright D., Mahowald A. P. The neurogenic locus brainiac cooperates with the Drosophila EGF receptor to establish the ovarian follicle and to determine its dorsal-ventral polarity. Development. 1992 Sep;116(1):177–192. doi: 10.1242/dev.116.1.177. [DOI] [PubMed] [Google Scholar]
  20. Han M., Sternberg P. W. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell. 1990 Nov 30;63(5):921–931. doi: 10.1016/0092-8674(90)90495-z. [DOI] [PubMed] [Google Scholar]
  21. Heitzler P., Bourouis M., Ruel L., Carteret C., Simpson P. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development. 1996 Jan;122(1):161–171. doi: 10.1242/dev.122.1.161. [DOI] [PubMed] [Google Scholar]
  22. Hsu J. C., Perrimon N. A temperature-sensitive MEK mutation demonstrates the conservation of the signaling pathways activated by receptor tyrosine kinases. Genes Dev. 1994 Sep 15;8(18):2176–2187. doi: 10.1101/gad.8.18.2176. [DOI] [PubMed] [Google Scholar]
  23. Husain J., Lo R., Grbavec D., Stifani S. Affinity for the nuclear compartment and expression during cell differentiation implicate phosphorylated Groucho/TLE1 forms of higher molecular mass in nuclear functions. Biochem J. 1996 Jul 15;317(Pt 2):523–531. doi: 10.1042/bj3170523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ingham P. W., Pinchin S. M., Howard K. R., Ish-Horowicz D. Genetic Analysis of the Hairy Locus in DROSOPHILA MELANOGASTER. Genetics. 1985 Nov;111(3):463–486. doi: 10.1093/genetics/111.3.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Karim F. D., Chang H. C., Therrien M., Wassarman D. A., Laverty T., Rubin G. M. A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics. 1996 May;143(1):315–329. doi: 10.1093/genetics/143.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kayne P. S., Sternberg P. W. Ras pathways in Caenorhabditis elegans. Curr Opin Genet Dev. 1995 Feb;5(1):38–43. doi: 10.1016/s0959-437x(95)90051-9. [DOI] [PubMed] [Google Scholar]
  27. Kenyon C. A perfect vulva every time: gradients and signaling cascades in C. elegans. Cell. 1995 Jul 28;82(2):171–174. doi: 10.1016/0092-8674(95)90302-x. [DOI] [PubMed] [Google Scholar]
  28. Kuriyama M., Harada N., Kuroda S., Yamamoto T., Nakafuku M., Iwamatsu A., Yamamoto D., Prasad R., Croce C., Canaani E. Identification of AF-6 and canoe as putative targets for Ras. J Biol Chem. 1996 Jan 12;271(2):607–610. doi: 10.1074/jbc.271.2.607. [DOI] [PubMed] [Google Scholar]
  29. Lecourtois M., Schweisguth F. The neurogenic suppressor of hairless DNA-binding protein mediates the transcriptional activation of the enhancer of split complex genes triggered by Notch signaling. Genes Dev. 1995 Nov 1;9(21):2598–2608. doi: 10.1101/gad.9.21.2598. [DOI] [PubMed] [Google Scholar]
  30. Lu X., Melnick M. B., Hsu J. C., Perrimon N. Genetic and molecular analyses of mutations involved in Drosophila raf signal transduction. EMBO J. 1994 Jun 1;13(11):2592–2599. doi: 10.1002/j.1460-2075.1994.tb06549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miyamoto H., Nihonmatsu I., Kondo S., Ueda R., Togashi S., Hirata K., Ikegami Y., Yamamoto D. canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila. Genes Dev. 1995 Mar 1;9(5):612–625. doi: 10.1101/gad.9.5.612. [DOI] [PubMed] [Google Scholar]
  32. Neuman-Silberberg F. S., Schüpbach T. The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell. 1993 Oct 8;75(1):165–174. [PubMed] [Google Scholar]
  33. Paroush Z., Finley R. L., Jr, Kidd T., Wainwright S. M., Ingham P. W., Brent R., Ish-Horowicz D. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins. Cell. 1994 Dec 2;79(5):805–815. doi: 10.1016/0092-8674(94)90070-1. [DOI] [PubMed] [Google Scholar]
  34. Perrimon N., Desplan C. Signal transduction in the early Drosophila embryo: when genetics meets biochemistry. Trends Biochem Sci. 1994 Nov;19(11):509–513. doi: 10.1016/0968-0004(94)90140-6. [DOI] [PubMed] [Google Scholar]
  35. Perrimon N. The torso receptor protein-tyrosine kinase signaling pathway: an endless story. Cell. 1993 Jul 30;74(2):219–222. doi: 10.1016/0092-8674(93)90412-j. [DOI] [PubMed] [Google Scholar]
  36. Preiss A., Hartley D. A., Artavanis-Tsakonas S. The molecular genetics of Enhancer of split, a gene required for embryonic neural development in Drosophila. EMBO J. 1988 Dec 1;7(12):3917–3927. doi: 10.1002/j.1460-2075.1988.tb03278.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Raz E., Shilo B. Z. Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the EGF receptor homolog. Genes Dev. 1993 Oct;7(10):1937–1948. doi: 10.1101/gad.7.10.1937. [DOI] [PubMed] [Google Scholar]
  38. Rogge R. D., Karlovich C. A., Banerjee U. Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell. 1991 Jan 11;64(1):39–48. doi: 10.1016/0092-8674(91)90207-f. [DOI] [PubMed] [Google Scholar]
  39. Roth S., Neuman-Silberberg F. S., Barcelo G., Schüpbach T. cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell. 1995 Jun 16;81(6):967–978. doi: 10.1016/0092-8674(95)90016-0. [DOI] [PubMed] [Google Scholar]
  40. Rubin G. M. Signal transduction and the fate of the R7 photoreceptor in Drosophila. Trends Genet. 1991 Nov-Dec;7(11-12):372–377. doi: 10.1016/0168-9525(91)90258-r. [DOI] [PubMed] [Google Scholar]
  41. Ruohola-Baker H., Grell E., Chou T. B., Baker D., Jan L. Y., Jan Y. N. Spatially localized rhomboid is required for establishment of the dorsal-ventral axis in Drosophila oogenesis. Cell. 1993 Jun 4;73(5):953–965. doi: 10.1016/0092-8674(93)90273-s. [DOI] [PubMed] [Google Scholar]
  42. Ruohola H., Bremer K. A., Baker D., Swedlow J. R., Jan L. Y., Jan Y. N. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell. 1991 Aug 9;66(3):433–449. doi: 10.1016/0092-8674(81)90008-8. [DOI] [PubMed] [Google Scholar]
  43. Rutledge B. J., Zhang K., Bier E., Jan Y. N., Perrimon N. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev. 1992 Aug;6(8):1503–1517. doi: 10.1101/gad.6.8.1503. [DOI] [PubMed] [Google Scholar]
  44. Schnepp B., Grumbling G., Donaldson T., Simcox A. Vein is a novel component in the Drosophila epidermal growth factor receptor pathway with similarity to the neuregulins. Genes Dev. 1996 Sep 15;10(18):2302–2313. doi: 10.1101/gad.10.18.2302. [DOI] [PubMed] [Google Scholar]
  45. Schrons H., Knust E., Campos-Ortega J. A. The Enhancer of split complex and adjacent genes in the 96F region of Drosophila melanogaster are required for segregation of neural and epidermal progenitor cells. Genetics. 1992 Oct;132(2):481–503. doi: 10.1093/genetics/132.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schweitzer R., Shaharabany M., Seger R., Shilo B. Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination. Genes Dev. 1995 Jun 15;9(12):1518–1529. doi: 10.1101/gad.9.12.1518. [DOI] [PubMed] [Google Scholar]
  47. Schweitzer R., Shilo B. Z. A thousand and one roles for the Drosophila EGF receptor. Trends Genet. 1997 May;13(5):191–196. doi: 10.1016/s0168-9525(97)01091-3. [DOI] [PubMed] [Google Scholar]
  48. Shellenbarger D. L., Mohler J. D. Temperature-sensitive periods and autonomy of pleiotropic effects of l(1)Nts1, a conditional notch lethal in Drosophila. Dev Biol. 1978 Feb;62(2):432–446. doi: 10.1016/0012-1606(78)90226-9. [DOI] [PubMed] [Google Scholar]
  49. Simcox A. Differential requirement for EGF-like ligands in Drosophila wing development. Mech Dev. 1997 Feb;62(1):41–50. doi: 10.1016/s0925-4773(96)00643-0. [DOI] [PubMed] [Google Scholar]
  50. Simon M. A., Bowtell D. D., Dodson G. S., Laverty T. R., Rubin G. M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell. 1991 Nov 15;67(4):701–716. doi: 10.1016/0092-8674(91)90065-7. [DOI] [PubMed] [Google Scholar]
  51. Singh N., Han M. sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. Genes Dev. 1995 Sep 15;9(18):2251–2265. doi: 10.1101/gad.9.18.2251. [DOI] [PubMed] [Google Scholar]
  52. Sturtevant M. A., Bier E. Analysis of the genetic hierarchy guiding wing vein development in Drosophila. Development. 1995 Mar;121(3):785–801. doi: 10.1242/dev.121.3.785. [DOI] [PubMed] [Google Scholar]
  53. Sturtevant M. A., O'Neill J. W., Bier E. Down-regulation of Drosophila Egf-r mRNA levels following hyperactivated receptor signaling. Development. 1994 Sep;120(9):2593–2600. doi: 10.1242/dev.120.9.2593. [DOI] [PubMed] [Google Scholar]
  54. Sturtevant M. A., Roark M., Bier E. The Drosophila rhomboid gene mediates the localized formation of wing veins and interacts genetically with components of the EGF-R signaling pathway. Genes Dev. 1993 Jun;7(6):961–973. doi: 10.1101/gad.7.6.961. [DOI] [PubMed] [Google Scholar]
  55. Tio M., Moses K. The Drosophila TGF alpha homolog Spitz acts in photoreceptor recruitment in the developing retina. Development. 1997 Jan;124(2):343–351. doi: 10.1242/dev.124.2.343. [DOI] [PubMed] [Google Scholar]
  56. Tsuda L., Inoue Y. H., Yoo M. A., Mizuno M., Hata M., Lim Y. M., Adachi-Yamada T., Ryo H., Masamune Y., Nishida Y. A protein kinase similar to MAP kinase activator acts downstream of the raf kinase in Drosophila. Cell. 1993 Feb 12;72(3):407–414. doi: 10.1016/0092-8674(93)90117-9. [DOI] [PubMed] [Google Scholar]
  57. Tuck S., Greenwald I. lin-25, a gene required for vulval induction in Caenorhabditis elegans. Genes Dev. 1995 Feb 1;9(3):341–357. doi: 10.1101/gad.9.3.341. [DOI] [PubMed] [Google Scholar]
  58. Verheyen E. M., Purcell K. J., Fortini M. E., Artavanis-Tsakonas S. Analysis of dominant enhancers and suppressors of activated Notch in Drosophila. Genetics. 1996 Nov;144(3):1127–1141. doi: 10.1093/genetics/144.3.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Xu T., Caron L. A., Fehon R. G., Artavanis-Tsakonas S. The involvement of the Notch locus in Drosophila oogenesis. Development. 1992 Aug;115(4):913–922. doi: 10.1242/dev.115.4.913. [DOI] [PubMed] [Google Scholar]
  60. Xu T., Rubin G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development. 1993 Apr;117(4):1223–1237. doi: 10.1242/dev.117.4.1223. [DOI] [PubMed] [Google Scholar]
  61. Ziemer A., Tietze K., Knust E., Campos-Ortega J. A. Genetic analysis of enhancer of split, a locus involved in neurogenesis in Drosophila melanogaster. Genetics. 1988 May;119(1):63–74. doi: 10.1093/genetics/119.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. de Celis J. F. Expression and function of decapentaplegic and thick veins during the differentiation of the veins in the Drosophila wing. Development. 1997 Mar;124(5):1007–1018. doi: 10.1242/dev.124.5.1007. [DOI] [PubMed] [Google Scholar]
  63. de Celis J. F., Ruiz-Gómez M. groucho and hedgehog regulate engrailed expression in the anterior compartment of the Drosophila wing. Development. 1995 Oct;121(10):3467–3476. doi: 10.1242/dev.121.10.3467. [DOI] [PubMed] [Google Scholar]
  64. de Celis J. F., de Celis J., Ligoxygakis P., Preiss A., Delidakis C., Bray S. Functional relationships between Notch, Su(H) and the bHLH genes of the E(spl) complex: the E(spl) genes mediate only a subset of Notch activities during imaginal development. Development. 1996 Sep;122(9):2719–2728. doi: 10.1242/dev.122.9.2719. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES