Abstract
Arabidopsis seedlings repair UV-induced DNA damage via light-dependent and -independent pathways. The mechanism of the ``dark repair'' pathway is still unknown. To determine the number of genes required for dark repair and to investigate the substrate-specificity of this process we isolated mutants with enhanced sensitivity to UV radiation in the absence of photoreactivating light. Seven independently derived UV sensitive mutants were isolated from an EMS-mutagenized population. These fell into six complementation groups, two of which (UVR1 and UVH1) have previously been defined. Four of these mutants are defective in the dark repair of UV-induced pyrimidine [6-4] pyrimidinone dimers. These four mutant lines are sensitive to the growth-inhibitory effects of gamma radiation, suggesting that this repair pathway is also involved in the repair of some type of gamma-induced DNA damage product. The requirement for the coordinate action of several different gene products for effective repair of pyrimidine dimers, as well as the nonspecific nature of the repair activity, is consistent with nucleotide excision repair mechanisms previously described in Saccharomyces cerevisiae and nonplant higher eukaryotes and inconsistent with substrate-specific base excision repair mechanisms found in some bacteria, bacteriophage, and fungi.
Full Text
The Full Text of this article is available as a PDF (6.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad M., Jarillo J. A., Klimczak L. J., Landry L. G., Peng T., Last R. L., Cashmore A. R. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. Plant Cell. 1997 Feb;9(2):199–207. doi: 10.1105/tpc.9.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Bowman K. K., Sidik K., Smith C. A., Taylor J. S., Doetsch P. W., Freyer G. A. A new ATP-independent DNA endonuclease from Schizosaccharomyces pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts. Nucleic Acids Res. 1994 Aug 11;22(15):3026–3032. doi: 10.1093/nar/22.15.3026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britt A. B., Chen J. J., Wykoff D., Mitchell D. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6-4) dimers. Science. 1993 Sep 17;261(5128):1571–1574. doi: 10.1126/science.8372351. [DOI] [PubMed] [Google Scholar]
- Davies A. A., Friedberg E. C., Tomkinson A. E., Wood R. D., West S. C. Role of the Rad1 and Rad10 proteins in nucleotide excision repair and recombination. J Biol Chem. 1995 Oct 20;270(42):24638–24641. doi: 10.1074/jbc.270.42.24638. [DOI] [PubMed] [Google Scholar]
- Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
- Harlow G. R., Jenkins M. E., Pittalwala T. S., Mount D. W. Isolation of uvh1, an Arabidopsis mutant hypersensitive to ultraviolet light and ionizing radiation. Plant Cell. 1994 Feb;6(2):227–235. doi: 10.1105/tpc.6.2.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeijmakers J. H. Nucleotide excision repair I: from E. coli to yeast. Trends Genet. 1993 May;9(5):173–177. doi: 10.1016/0168-9525(93)90164-d. [DOI] [PubMed] [Google Scholar]
- Hoeijmakers J. H. Nucleotide excision repair. II: From yeast to mammals. Trends Genet. 1993 Jun;9(6):211–217. doi: 10.1016/0168-9525(93)90121-w. [DOI] [PubMed] [Google Scholar]
- Jenkins M. E., Harlow G. R., Liu Z., Shotwell M. A., Ma J., Mount D. W. Radiation-sensitive mutants of Arabidopsis thaliana. Genetics. 1995 Jun;140(2):725–732. doi: 10.1093/genetics/140.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang C. Z., Yee J., Mitchell D. L., Britt A. B. Photorepair mutants of Arabidopsis. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7441–7445. doi: 10.1073/pnas.94.14.7441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kato T., Shinoura Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet. 1977 Nov 14;156(2):121–131. doi: 10.1007/BF00283484. [DOI] [PubMed] [Google Scholar]
- Landry L. G., Stapleton A. E., Lim J., Hoffman P., Hays J. B., Walbot V., Last R. L. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):328–332. doi: 10.1073/pnas.94.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michelmore R. W., Paran I., Kesseli R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828–9832. doi: 10.1073/pnas.88.21.9828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell D. L., Haipek C. A., Clarkson J. M. (6-4)Photoproducts are removed from the DNA of UV-irradiated mammalian cells more efficiently than cyclobutane pyrimidine dimers. Mutat Res. 1985 Jul;143(3):109–112. doi: 10.1016/s0165-7992(85)80018-x. [DOI] [PubMed] [Google Scholar]
- Mitchell D. L., Nairn R. S. The biology of the (6-4) photoproduct. Photochem Photobiol. 1989 Jun;49(6):805–819. doi: 10.1111/j.1751-1097.1989.tb05578.x. [DOI] [PubMed] [Google Scholar]
- Narasimhulu S. B., Deng X. B., Sarria R., Gelvin S. B. Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell. 1996 May;8(5):873–886. doi: 10.1105/tpc.8.5.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang Q., Hays J. B. UV-B-Inducible and Temperature-Sensitive Photoreactivation of Cyclobutane Pyrimidine Dimers in Arabidopsis thaliana. Plant Physiol. 1991 Feb;95(2):536–543. doi: 10.1104/pp.95.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prado F., Aguilera A. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes. Genetics. 1995 Jan;139(1):109–123. doi: 10.1093/genetics/139.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sciaky D., Montoya A. L., Chilton M. D. Fingerprints of Agrobacterium Ti plasmids. Plasmid. 1978 Feb;1(2):238–253. doi: 10.1016/0147-619x(78)90042-2. [DOI] [PubMed] [Google Scholar]
- Sonti R. V., Chiurazzi M., Wong D., Davies C. S., Harlow G. R., Mount D. W., Signer E. R. Arabidopsis mutants deficient in T-DNA integration. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11786–11790. doi: 10.1073/pnas.92.25.11786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Houten B., Snowden A. Mechanism of action of the Escherichia coli UvrABC nuclease: clues to the damage recognition problem. Bioessays. 1993 Jan;15(1):51–59. doi: 10.1002/bies.950150108. [DOI] [PubMed] [Google Scholar]
- Yajima H., Takao M., Yasuhira S., Zhao J. H., Ishii C., Inoue H., Yasui A. A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light. EMBO J. 1995 May 15;14(10):2393–2399. doi: 10.1002/j.1460-2075.1995.tb07234.x. [DOI] [PMC free article] [PubMed] [Google Scholar]