Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):1411–1422. doi: 10.1093/genetics/147.3.1411

Exceptional Segregation of a Selectable Marker (Kan(r)) in Arabidopsis Identifies Genes Important for Gametophytic Growth and Development

K A Feldmann 1, D A Coury 1, M L Christianson 1
PMCID: PMC1208262  PMID: 9383081

Abstract

Genes transformed into plants are usually inherited in a regular Mendelian manner. There are, however, transformants in which the selectable trait fails to segregate as expected. Genetic analysis of the kanamycin-resistance (Kan(R)) trait in >900 independent transformants of Arabidopsis revealed that 9% produced progeny families with an enormous deficiency of Kan(R) individuals. Self-pollination of individual Kan(R) plants from these families revealed lines that continued to segregate for a deficiency of Kan(R) seedlings. In subsequent generations, the segregation ratio in these families stabilized at ~1 Kan(R): 3 Kan(S). Molecular analyses showed that the deficiency of Kan(R) individuals reflected the complete absence of the introduced DNA. Reciprocal backcrosses to untransformed plants showed unequal transmission of the Kan(R) trait through the gametes in these exceptional lines. In five cases, this was primarily a failure of transmission through the microgametophyte (pollen) and in the other two cases, primarily a failure of transmission through the megagametophyte (embryo sac or egg). The number of seeds per silique was reduced by 50% in the latter two lines. We conclude that our exceptional transformants contain T-DNA insertions that delete or disrupt genes essential for gametophytic growth and development.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., Dirkse W. G., Stiekema W. J., Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature. 1993 Jun 24;363(6431):715–717. doi: 10.1038/363715a0. [DOI] [PubMed] [Google Scholar]
  2. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  3. Birchler J. A., Levin D. M. Directed synthesis of a segmental chromosomal transposition: an approach to the study of chromosomes lethal to the gametophyte generation of maize. Genetics. 1991 Mar;127(3):609–618. doi: 10.1093/genetics/127.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Budar F., Thia-Toong L., Van Montagu M., Hernalsteens J. P. Agrobacterium-Mediated Gene Transfer Results Mainly in Transgenic Plants Transmitting T-DNA as a Single Mendelian Factor. Genetics. 1986 Sep;114(1):303–313. doi: 10.1093/genetics/114.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castle L. A., Errampalli D., Atherton T. L., Franzmann L. H., Yoon E. S., Meinke D. W. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet. 1993 Dec;241(5-6):504–514. doi: 10.1007/BF00279892. [DOI] [PubMed] [Google Scholar]
  6. Chen Y. C., McCormick S. sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development. 1996 Oct;122(10):3243–3253. doi: 10.1242/dev.122.10.3243. [DOI] [PubMed] [Google Scholar]
  7. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ishida Y., Saito H., Ohta S., Hiei Y., Komari T., Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol. 1996 Jun;14(6):745–750. doi: 10.1038/nbt0696-745. [DOI] [PubMed] [Google Scholar]
  9. Mascarenhas J. P. The Male Gametophyte of Flowering Plants. Plant Cell. 1989 Jul;1(7):657–664. doi: 10.1105/tpc.1.7.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meyerowitz E. M., Pruitt R. E. Arabidopsis thaliana and Plant Molecular Genetics. Science. 1985 Sep 20;229(4719):1214–1218. doi: 10.1126/science.229.4719.1214. [DOI] [PubMed] [Google Scholar]
  12. Nadeau J. A., Zhang X. S., Li J., O'Neill S. D. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell. 1996 Feb;8(2):213–239. doi: 10.1105/tpc.8.2.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Potrykus I., Paszkowski J., Saul M. W., Petruska J., Shillito R. D. Molecular and general genetics of a hybrid foreign gene introduced into tobacco by direct gene transfer. Mol Gen Genet. 1985;199(2):169–177. doi: 10.1007/BF00330255. [DOI] [PubMed] [Google Scholar]
  14. Rerie W. G., Feldmann K. A., Marks M. D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev. 1994 Jun 15;8(12):1388–1399. doi: 10.1101/gad.8.12.1388. [DOI] [PubMed] [Google Scholar]
  15. Rédei G P. Non-Mendelian Megagametogenesis in Arabidopsis. Genetics. 1965 Jun;51(6):857–872. doi: 10.1093/genetics/51.6.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rédei G. P. Arabidopsis as a genetic tool. Annu Rev Genet. 1975;9:111–127. doi: 10.1146/annurev.ge.09.120175.000551. [DOI] [PubMed] [Google Scholar]
  17. Tsay Y. F., Schroeder J. I., Feldmann K. A., Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 1993 Mar 12;72(5):705–713. doi: 10.1016/0092-8674(93)90399-b. [DOI] [PubMed] [Google Scholar]
  18. Velten J., Schell J. Selection-expression plasmid vectors for use in genetic transformation of higher plants. Nucleic Acids Res. 1985 Oct 11;13(19):6981–6998. doi: 10.1093/nar/13.19.6981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature. 1990 Jul 5;346(6279):35–39. doi: 10.1038/346035a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES