Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):1431–1444. doi: 10.1093/genetics/147.3.1431

The Amounts of Nucleotide Variation within and between Allelic Classes and the Reconstruction of the Common Ancestral Sequence in a Population

H Innan 1, F Tajima 1
PMCID: PMC1208264  PMID: 9383083

Abstract

The amounts of nucleotide variation within and between allelic classes were studied. The expectation and variance of the number of segregating sites and the expectation of the average number of pairwise differences among a sample of DNA sequences were obtained by using the theory of gene genealogy with no recombination. When the ancestral allelic class is unknown, it was found that the amount of variation within an allelic class increases with its frequency in the sample, while the amount of variation between two allelic classes is the largest when the two allelic classes exist equally. On the other hand, if we know the ancestral allelic class, as the frequency of the mutant allelic class increases, the amounts of variation within the mutant allelic class and between two allelic classes increase and the amount of variation within the ancestral allelic class decreases. As an example, we analyzed the polymorphism in the ND5 gene of Drosophila melanogaster and constructed the common ancestral sequence with high confidence, suggesting that the pattern of polymorphism within species gives useful information to know the ancestral sequence of the species.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fu Y. X., Li W. H. Statistical tests of neutrality of mutations. Genetics. 1993 Mar;133(3):693–709. doi: 10.1093/genetics/133.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Griffiths R. C. Lines of descent in the diffusion approximation of neutral Wright-Fisher models. Theor Popul Biol. 1980 Feb;17(1):37–50. doi: 10.1016/0040-5809(80)90013-1. [DOI] [PubMed] [Google Scholar]
  3. Hudson R. R., Bailey K., Skarecky D., Kwiatowski J., Ayala F. J. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. doi: 10.1093/genetics/136.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hudson R. R., Kaplan N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985 Sep;111(1):147–164. doi: 10.1093/genetics/111.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kimura M. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics. 1969 Apr;61(4):893–903. doi: 10.1093/genetics/61.4.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rand D. M., Kann L. M. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol. 1996 Jul;13(6):735–748. doi: 10.1093/oxfordjournals.molbev.a025634. [DOI] [PubMed] [Google Scholar]
  8. Slatkin M. Gene genealogies within mutant allelic classes. Genetics. 1996 May;143(1):579–587. doi: 10.1093/genetics/143.1.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983 Oct;105(2):437–460. doi: 10.1093/genetics/105.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Watterson G. A., Guess H. A. Is the most frequent allele the oldest? Theor Popul Biol. 1977 Apr;11(2):141–160. doi: 10.1016/0040-5809(77)90023-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES