Skip to main content
Genetics logoLink to Genetics
. 1997 Nov;147(3):953–959. doi: 10.1093/genetics/147.3.953

The Advantage of Sex in the RNA Virus φ6

L Chao 1, T T Tran 1, T T Tran 1
PMCID: PMC1208270  PMID: 9383044

Abstract

When laboratory populations of the RNA bacteriophage φ6 are subjected to intensified genetic drift, they experience a decline in fitness. These experiments demonstrate that the average effect of mutations is deleterious, and they are used to suggest that Muller's ratchet can operate in these viruses. However, the operation of Muller's ratchet does not alone guarantee an advantage of sex. When φ6 populations were subjected to a series of bottlenecks of one individual and then crossed, the measured advantage of sex was not significant. To determine whether a small sample size, as opposed to allelism or another explanation, can account for the negative result, we repeated the φ6 experiments by crossing a larger set of populations. We found that bottlenecked populations of φ6 could recover fitness through mutations. However, hybrids produced by crossing the populations recovered an additional amount over the contribution of mutations. This additional amount, which represents an advantage of sex to φ6, was determined to be significantly greater than zero. These results provide indirect support for an advantage of sex through Muller's ratchet. However, we also use our experimental design and results to propose an alternative to Muller's ratchet as a model for the evolution of sex.

Full Text

The Full Text of this article is available as a PDF (746.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chao L. Fitness of RNA virus decreased by Muller's ratchet. Nature. 1990 Nov 29;348(6300):454–455. doi: 10.1038/348454a0. [DOI] [PubMed] [Google Scholar]
  2. Duarte E. A., Novella I. S., Ledesma S., Clarke D. K., Moya A., Elena S. F., Domingo E., Holland J. J. Subclonal components of consensus fitness in an RNA virus clone. J Virol. 1994 Jul;68(7):4295–4301. doi: 10.1128/jvi.68.7.4295-4301.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Duarte E., Clarke D., Moya A., Domingo E., Holland J. Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6015–6019. doi: 10.1073/pnas.89.13.6015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gottlieb P., Metzger S., Romantschuk M., Carton J., Strassman J., Bamford D. H., Kalkkinen N., Mindich L. Nucleotide sequence of the middle dsRNA segment of bacteriophage phi 6: placement of the genes of membrane-associated proteins. Virology. 1988 Mar;163(1):183–190. doi: 10.1016/0042-6822(88)90245-0. [DOI] [PubMed] [Google Scholar]
  5. Haigh J. The accumulation of deleterious genes in a population--Muller's Ratchet. Theor Popul Biol. 1978 Oct;14(2):251–267. doi: 10.1016/0040-5809(78)90027-8. [DOI] [PubMed] [Google Scholar]
  6. MULLER H. J. THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. Mutat Res. 1964 May;106:2–9. doi: 10.1016/0027-5107(64)90047-8. [DOI] [PubMed] [Google Scholar]
  7. McGraw T., Mindich L., Frangione B. Nucleotide sequence of the small double-stranded RNA segment of bacteriophage phi 6: novel mechanism of natural translational control. J Virol. 1986 Apr;58(1):142–151. doi: 10.1128/jvi.58.1.142-151.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mindich L., Nemhauser I., Gottlieb P., Romantschuk M., Carton J., Frucht S., Strassman J., Bamford D. H., Kalkkinen N. Nucleotide sequence of the large double-stranded RNA segment of bacteriophage phi 6: genes specifying the viral replicase and transcriptase. J Virol. 1988 Apr;62(4):1180–1185. doi: 10.1128/jvi.62.4.1180-1185.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mindich L., Sinclair J. F., Levine D., Cohen J. Genetic studies of temperature-sensitive and nonsense mutants of bacteriophage phi6. Virology. 1976 Nov;75(1):218–223. doi: 10.1016/0042-6822(76)90020-9. [DOI] [PubMed] [Google Scholar]
  10. Vidaver A. K., Koski R. K., Van Etten J. L. Bacteriophage phi6: a Lipid-Containing Virus of Pseudomonas phaseolicola. J Virol. 1973 May;11(5):799–805. doi: 10.1128/jvi.11.5.799-805.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES