Skip to main content
Genetics logoLink to Genetics
. 1997 Dec;147(4):1609–1633. doi: 10.1093/genetics/147.4.1609

Analysis of Mutationally Altered Forms of the Cct6 Subunit of the Chaperonin from Saccharomyces Cerevisiae

P Lin 1, T S Cardillo 1, L M Richard 1, G B Segel 1, F Sherman 1
PMCID: PMC1208335  PMID: 9409825

Abstract

The Cct double-ring chaperonin complex of Saccharomyces cerevisiae is comprised of eight essential subunits, Cct1p-Cct8p, and assists the folding of substrates such as actins and tubulins. Single and multiple amino acid replacements of Cct6p were constructed by oligonucleotide-directed mutagenesis, including changes of charged to alanine residues and uncharged to charged residues. The replacements were targeted, in part, to residues corresponding to functionally critical regions identified in the published crystal structure of the Escherichia coli chaperonin, GroEL. Here, we report the critical hydrophobic residues and clusters of hydrophilic residues in regions corresponding to those from the apical domain of GroEL implicated in peptide binding and peptide release, and certain residues in the putative equatorial domain implicated in subunit-to-subunit interaction. In contrast to their homologous counterparts in Cct2p and Cct1p, the highly conserved putative ATP binding motifs of Cct6p were relatively amenable to mutations. Our data suggest that the entire Cct6p molecule might be essential for assembly of Cct complex and might participate in binding substrates. However, there appeared to exist a functional hierarchy in ATP binding/hydrolysis among Cct subunits, as suggested by the high tolerance of Cct6p to mutations within the putative ATP binding pocket.

Full Text

The Full Text of this article is available as a PDF (7.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aharoni A., Horovitz A. Inter-ring communication is disrupted in the GroEL mutant Arg13 --> Gly; Ala126 --> Val with known crystal structure. J Mol Biol. 1996 May 24;258(5):732–735. doi: 10.1006/jmbi.1996.0282. [DOI] [PubMed] [Google Scholar]
  2. Altschuh D., Vernet T., Berti P., Moras D., Nagai K. Coordinated amino acid changes in homologous protein families. Protein Eng. 1988 Sep;2(3):193–199. doi: 10.1093/protein/2.3.193. [DOI] [PubMed] [Google Scholar]
  3. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  4. Bochkareva E. S., Lissin N. M., Flynn G. C., Rothman J. E., Girshovich A. S. Positive cooperativity in the functioning of molecular chaperone GroEL. J Biol Chem. 1992 Apr 5;267(10):6796–6800. [PubMed] [Google Scholar]
  5. Boisvert D. C., Wang J., Otwinowski Z., Horwich A. L., Sigler P. B. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996 Feb;3(2):170–177. doi: 10.1038/nsb0296-170. [DOI] [PubMed] [Google Scholar]
  6. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  7. Chen X., Sullivan D. S., Huffaker T. C. Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):9111–9115. doi: 10.1073/pnas.91.19.9111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cunningham B. C., Wells J. A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989 Jun 2;244(4908):1081–1085. doi: 10.1126/science.2471267. [DOI] [PubMed] [Google Scholar]
  10. Di Como C. J., Arndt K. T. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 1996 Aug 1;10(15):1904–1916. doi: 10.1101/gad.10.15.1904. [DOI] [PubMed] [Google Scholar]
  11. Ellis R. J., Hartl F. U. Protein folding in the cell: competing models of chaperonin function. FASEB J. 1996 Jan;10(1):20–26. doi: 10.1096/fasebj.10.1.8566542. [DOI] [PubMed] [Google Scholar]
  12. Ellis R. J. Molecular chaperones: the plant connection. Science. 1990 Nov 16;250(4983):954–959. doi: 10.1126/science.250.4983.954. [DOI] [PubMed] [Google Scholar]
  13. Fenton W. A., Kashi Y., Furtak K., Horwich A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994 Oct 13;371(6498):614–619. doi: 10.1038/371614a0. [DOI] [PubMed] [Google Scholar]
  14. Frydman J., Hartl F. U. Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms. Science. 1996 Jun 7;272(5267):1497–1502. doi: 10.1126/science.272.5267.1497. [DOI] [PubMed] [Google Scholar]
  15. Frydman J., Nimmesgern E., Ohtsuka K., Hartl F. U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature. 1994 Jul 14;370(6485):111–117. doi: 10.1038/370111a0. [DOI] [PubMed] [Google Scholar]
  16. Gao Y., Melki R., Walden P. D., Lewis S. A., Ampe C., Rommelaere H., Vandekerckhove J., Cowan N. J. A novel cochaperonin that modulates the ATPase activity of cytoplasmic chaperonin. J Cell Biol. 1994 Jun;125(5):989–996. doi: 10.1083/jcb.125.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gao Y., Vainberg I. E., Chow R. L., Cowan N. J. Two cofactors and cytoplasmic chaperonin are required for the folding of alpha- and beta-tubulin. Mol Cell Biol. 1993 Apr;13(4):2478–2485. doi: 10.1128/mcb.13.4.2478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horovitz A., Bochkareva E. S., Girshovich A. S. The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly. J Biol Chem. 1993 May 15;268(14):9957–9959. [PubMed] [Google Scholar]
  19. Horovitz A., Bochkareva E. S., Yifrach O., Girshovich A. S. Prediction of an inter-residue interaction in the chaperonin GroEL from multiple sequence alignment is confirmed by double-mutant cycle analysis. J Mol Biol. 1994 Apr 29;238(2):133–138. doi: 10.1006/jmbi.1994.1275. [DOI] [PubMed] [Google Scholar]
  20. Hunt J. F., Weaver A. J., Landry S. J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8 A resolution. Nature. 1996 Jan 4;379(6560):37–45. doi: 10.1038/379037a0. [DOI] [PubMed] [Google Scholar]
  21. Hynes G., Sutton C. W., U S., Willison K. R. Peptide mass fingerprinting of chaperonin-containing TCP-1 (CCT) and copurifying proteins. FASEB J. 1996 Jan;10(1):137–147. doi: 10.1096/fasebj.10.1.8566534. [DOI] [PubMed] [Google Scholar]
  22. Knapp S., Schmidt-Krey I., Hebert H., Bergman T., Jörnvall H., Ladenstein R. The molecular chaperonin TF55 from the Thermophilic archaeon Sulfolobus solfataricus. A biochemical and structural characterization. J Mol Biol. 1994 Sep 30;242(4):397–407. doi: 10.1006/jmbi.1994.1590. [DOI] [PubMed] [Google Scholar]
  23. Landry S. J., Jordan R., McMacken R., Gierasch L. M. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature. 1992 Jan 30;355(6359):455–457. doi: 10.1038/355455a0. [DOI] [PubMed] [Google Scholar]
  24. Langer T., Lu C., Echols H., Flanagan J., Hayer M. K., Hartl F. U. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature. 1992 Apr 23;356(6371):683–689. doi: 10.1038/356683a0. [DOI] [PubMed] [Google Scholar]
  25. Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lewis V. A., Hynes G. M., Zheng D., Saibil H., Willison K. T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature. 1992 Jul 16;358(6383):249–252. doi: 10.1038/358249a0. [DOI] [PubMed] [Google Scholar]
  27. Li W. Z., Lin P., Frydman J., Boal T. R., Cardillo T. S., Richard L. M., Toth D., Lichtman M. A., Hartl F. U., Sherman F. Tcp20, a subunit of the eukaryotic TRiC chaperonin from humans and yeast. J Biol Chem. 1994 Jul 15;269(28):18616–18622. [PubMed] [Google Scholar]
  28. Liou A. K., Willison K. R. Elucidation of the subunit orientation in CCT (chaperonin containing TCP1) from the subunit composition of CCT micro-complexes. EMBO J. 1997 Jul 16;16(14):4311–4316. doi: 10.1093/emboj/16.14.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  30. Marco S., Carrascosa J. L., Valpuesta J. M. Reversible interaction of beta-actin along the channel of the TCP-1 cytoplasmic chaperonin. Biophys J. 1994 Jul;67(1):364–368. doi: 10.1016/S0006-3495(94)80489-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996 Feb 1;379(6564):420–426. doi: 10.1038/379420a0. [DOI] [PubMed] [Google Scholar]
  32. Melki R., Cowan N. J. Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol Cell Biol. 1994 May;14(5):2895–2904. doi: 10.1128/mcb.14.5.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miklos D., Caplan S., Mertens D., Hynes G., Pitluk Z., Kashi Y., Harrison-Lavoie K., Stevenson S., Brown C., Barrell B. Primary structure and function of a second essential member of the heterooligomeric TCP1 chaperonin complex of yeast, TCP1 beta. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2743–2747. doi: 10.1073/pnas.91.7.2743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  35. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schmidt A., Kunz J., Hall M. N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13780–13785. doi: 10.1073/pnas.93.24.13780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmidt M., Rutkat K., Rachel R., Pfeifer G., Jaenicke R., Viitanen P., Lorimer G., Buchner J. Symmetric complexes of GroE chaperonins as part of the functional cycle. Science. 1994 Jul 29;265(5172):656–659. doi: 10.1126/science.7913554. [DOI] [PubMed] [Google Scholar]
  39. Sherman MYu, Goldberg A. L. Heat shock in Escherichia coli alters the protein-binding properties of the chaperonin groEL by inducing its phosphorylation. Nature. 1992 May 14;357(6374):167–169. doi: 10.1038/357167a0. [DOI] [PubMed] [Google Scholar]
  40. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  41. Soares H., Penque D., Mouta C., Rodrigues-Pousada C. A Tetrahymena orthologue of the mouse chaperonin subunit CCT gamma and its coexpression with tubulin during cilia recovery. J Biol Chem. 1994 Nov 18;269(46):29299–29307. [PubMed] [Google Scholar]
  42. Stoldt V., Rademacher F., Kehren V., Ernst J. F., Pearce D. A., Sherman F. Review: the Cct eukaryotic chaperonin subunits of Saccharomyces cerevisiae and other yeasts. Yeast. 1996 May;12(6):523–529. doi: 10.1002/(SICI)1097-0061(199605)12:6%3C523::AID-YEA962%3E3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  43. Tian G., Vainberg I. E., Tap W. D., Lewis S. A., Cowan N. J. Quasi-native chaperonin-bound intermediates in facilitated protein folding. J Biol Chem. 1995 Oct 13;270(41):23910–23913. doi: 10.1074/jbc.270.41.23910. [DOI] [PubMed] [Google Scholar]
  44. Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
  45. Trent J. D., Nimmesgern E., Wall J. S., Hartl F. U., Horwich A. L. A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide-1. Nature. 1991 Dec 12;354(6353):490–493. doi: 10.1038/354490a0. [DOI] [PubMed] [Google Scholar]
  46. Ursic D., Culbertson M. R. The yeast homolog to mouse Tcp-1 affects microtubule-mediated processes. Mol Cell Biol. 1991 May;11(5):2629–2640. doi: 10.1128/mcb.11.5.2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ursic D., Sedbrook J. C., Himmel K. L., Culbertson M. R. The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell. 1994 Oct;5(10):1065–1080. doi: 10.1091/mbc.5.10.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Waldmann T., Lupas A., Kellermann J., Peters J., Baumeister W. Primary structure of the thermosome from Thermoplasma acidophilum. Biol Chem Hoppe Seyler. 1995 Feb;376(2):119–126. doi: 10.1515/bchm3.1995.376.2.119. [DOI] [PubMed] [Google Scholar]
  49. Weber J., Bowman C., Wilke-Mounts S., Senior A. E. alpha-Aspartate 261 is a key residue in noncatalytic sites of Escherichia coli F1-ATPase. J Biol Chem. 1995 Sep 8;270(36):21045–21049. doi: 10.1074/jbc.270.36.21045. [DOI] [PubMed] [Google Scholar]
  50. Weiss C., Goloubinoff P. A mutant at position 87 of the GroEL chaperonin is affected in protein binding and ATP hydrolysis. J Biol Chem. 1995 Jun 9;270(23):13956–13960. doi: 10.1074/jbc.270.23.13956. [DOI] [PubMed] [Google Scholar]
  51. Weissman J. S., Rye H. S., Fenton W. A., Beechem J. M., Horwich A. L. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell. 1996 Feb 9;84(3):481–490. doi: 10.1016/s0092-8674(00)81293-3. [DOI] [PubMed] [Google Scholar]
  52. Wertman K. F., Drubin D. G., Botstein D. Systematic mutational analysis of the yeast ACT1 gene. Genetics. 1992 Oct;132(2):337–350. doi: 10.1093/genetics/132.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yaffe M. B., Farr G. W., Miklos D., Horwich A. L., Sternlicht M. L., Sternlicht H. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature. 1992 Jul 16;358(6383):245–248. doi: 10.1038/358245a0. [DOI] [PubMed] [Google Scholar]
  54. Yifrach O., Horovitz A. Two lines of allosteric communication in the oligomeric chaperonin GroEL are revealed by the single mutation Arg196-->Ala. J Mol Biol. 1994 Oct 28;243(3):397–401. doi: 10.1006/jmbi.1994.1667. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES