Skip to main content
Genetics logoLink to Genetics
. 1997 Dec;147(4):1769–1782. doi: 10.1093/genetics/147.4.1769

The Accumulation of P-Element-Induced Recombinants in the Germline of Male Drosophila Melanogaster

M M Tanaka 1, X M Liang 1, YHM Gray 1, J A Sved 1
PMCID: PMC1208345  PMID: 9409835

Abstract

P-element-induced recombination in Drosophila melanogaster occurs premeiotically. Recombinants are therefore expected to accumulate in the stem cells of the germline of P-element-carrying males. We show that both the recombination frequency and the incidence of ``clustering'' increase with the age of males carrying various P-element derivatives. The combination of end-deleted elements can lead to average recombination frequencies >50% with individual instances of 100% recombination. These elements also lowered the fertility of the carriers. We investigated these features by constructing an analytical and a computer simulation model of the course of events in the germline, incorporating the recently proposed hybrid element insertion (HEI) model of P-element activity. The model is able to predict extreme recombination levels, segregation ratio biases and lowered fertility through cell death in a single analysis.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bateman A. J. The influence of dose and germ-cell stage on x-ray-induced crossovers in male Drosophila. Mutat Res. 1968 Mar-Apr;5(2):243–257. doi: 10.1016/0027-5107(68)90023-7. [DOI] [PubMed] [Google Scholar]
  2. Bingham P. M., Kidwell M. G., Rubin G. M. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell. 1982 Jul;29(3):995–1004. doi: 10.1016/0092-8674(82)90463-9. [DOI] [PubMed] [Google Scholar]
  3. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  4. Gloor G. B., Nassif N. A., Johnson-Schlitz D. M., Preston C. R., Engels W. R. Targeted gene replacement in Drosophila via P element-induced gap repair. Science. 1991 Sep 6;253(5024):1110–1117. doi: 10.1126/science.1653452. [DOI] [PubMed] [Google Scholar]
  5. Gray Y. H., Tanaka M. M., Sved J. A. P-element-induced recombination in Drosophila melanogaster: hybrid element insertion. Genetics. 1996 Dec;144(4):1601–1610. doi: 10.1093/genetics/144.4.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hiraizumi Y. Spontaneous recombination in Drosophila melanogaster males. Proc Natl Acad Sci U S A. 1971 Feb;68(2):268–270. doi: 10.1073/pnas.68.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nassif N., Penney J., Pal S., Engels W. R., Gloor G. B. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol Cell Biol. 1994 Mar;14(3):1613–1625. doi: 10.1128/mcb.14.3.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pimpinelli S., Ripoll P. Nonrandom segregation of centromeres following mitotic recombination in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3900–3903. doi: 10.1073/pnas.83.11.3900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pirrotta V. Vectors for P-mediated transformation in Drosophila. Biotechnology. 1988;10:437–456. doi: 10.1016/b978-0-409-90042-2.50028-3. [DOI] [PubMed] [Google Scholar]
  10. Preston C. R., Sved J. A., Engels W. R. Flanking duplications and deletions associated with P-induced male recombination in Drosophila. Genetics. 1996 Dec;144(4):1623–1638. doi: 10.1093/genetics/144.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Robertson H. M., Preston C. R., Phillis R. W., Johnson-Schlitz D. M., Benz W. K., Engels W. R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988 Mar;118(3):461–470. doi: 10.1093/genetics/118.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sinclair D. A., Grigliatti T. A. Investigation of the nature of P-induced male recombination in Drosophila melanogaster. Genetics. 1985 Jun;110(2):257–279. doi: 10.1093/genetics/110.2.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stern C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics. 1936 Nov;21(6):625–730. doi: 10.1093/genetics/21.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sved J. A., Blackman L. M., Gilchrist A. S., Engels W. R. High levels of recombination induced by homologous P elements in Drosophila melanogaster. Mol Gen Genet. 1991 Mar;225(3):443–447. doi: 10.1007/BF00261685. [DOI] [PubMed] [Google Scholar]
  15. Sved J. A., Blackman L. M., Svoboda Y., Colless R. Male recombination with single and homologous P elements in Drosophila melanogaster. Mol Gen Genet. 1995 Feb 6;246(3):381–386. doi: 10.1007/BF00288612. [DOI] [PubMed] [Google Scholar]
  16. Sved J. A., Eggleston W. B., Engels W. R. Germ-line and somatic recombination induced by in vitro modified P elements in Drosophila melanogaster. Genetics. 1990 Feb;124(2):331–337. doi: 10.1093/genetics/124.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES