Skip to main content
Genetics logoLink to Genetics
. 1997 Dec;147(4):1843–1854. doi: 10.1093/genetics/147.4.1843

Geographic Structure of Mitochondrial and Nuclear Gene Polymorphisms in Australian Green Turtle Populations and Male-Biased Gene Flow

N N FitzSimmons 1, C Moritz 1, C J Limpus 1, L Pope 1, R Prince 1
PMCID: PMC1208350  PMID: 9409840

Abstract

The genetic structure of green turtle (Chelonia mydas) rookeries located around the Australian coast was assessed by (1) comparing the structure found within and among geographic regions, (2) comparing microsatellite loci vs. restriction fragment length polymorphism analyses of anonymous single copy nuclear DNA (ascnDNA) loci, and (3) comparing the structure found at nuclear DNA markers to that of previously analyzed mitochondrial (mtDNA) control region sequences. Significant genetic structure was observed over all regions at both sets of nuclear markers, though the microsatellite data provided greater resolution in identifying significant genetic differences in pairwise tests between regions. Inferences about population structure and migration rates from the microsatellite data varied depending on whether statistics were based on the stepwise mutation or infinite allele model, with the latter being more congruent with geography. Estimated rates of gene flow were generally higher than expected for nuclear DNA (nDNA) in comparison to mtDNA, and this difference was most pronounced in comparisons between the northern and southern Great Barrier Reef (GBR). The genetic data combined with results from physical tagging studies indicate that the lack of nuclear gene divergence through the GBR is likely due to the migration of sGBR turtles through the courtship area of the nGBR population, rather than male-biased dispersal. This example highlights the value of combining comparative studies of molecular variation with ecological data to infer population processes.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  2. Birky C. W., Jr, Fuerst P., Maruyama T. Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics. 1989 Mar;121(3):613–627. doi: 10.1093/genetics/121.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charlesworth B., Morgan M. T., Charlesworth D. The effect of deleterious mutations on neutral molecular variation. Genetics. 1993 Aug;134(4):1289–1303. doi: 10.1093/genetics/134.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dallas J. F., Dod B., Boursot P., Prager E. M., Bonhomme F. Population subdivision and gene flow in Danish house mice. Mol Ecol. 1995 Jun;4(3):311–320. doi: 10.1111/j.1365-294x.1995.tb00224.x. [DOI] [PubMed] [Google Scholar]
  5. Di Rienzo A., Peterson A. C., Garza J. C., Valdes A. M., Slatkin M., Freimer N. B. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166–3170. doi: 10.1073/pnas.91.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Encalada S. E., Lahanas P. N., Bjorndal K. A., Bolten A. B., Miyamoto M. M., Bowen B. W. Phylogeography and population structure of the Atlantic and Mediterranean green turtle Chelonia mydas: a mitochondrial DNA control region sequence assessment. Mol Ecol. 1996 Aug;5(4):473–483. [PubMed] [Google Scholar]
  7. Estoup A., Tailliez C., Cornuet J. M., Solignac M. Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol Biol Evol. 1995 Nov;12(6):1074–1084. doi: 10.1093/oxfordjournals.molbev.a040282. [DOI] [PubMed] [Google Scholar]
  8. Excoffier L., Smouse P. E., Quattro J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992 Jun;131(2):479–491. doi: 10.1093/genetics/131.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FitzSimmons N. N., Limpus C. J., Norman J. A., Goldizen A. R., Miller J. D., Moritz C. Philopatry of male marine turtles inferred from mitochondrial DNA markers. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8912–8917. doi: 10.1073/pnas.94.16.8912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FitzSimmons N. N., Moritz C., Moore S. S. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol Biol Evol. 1995 May;12(3):432–440. doi: 10.1093/oxfordjournals.molbev.a040218. [DOI] [PubMed] [Google Scholar]
  11. Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
  12. Karl S. A., Avise J. C. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science. 1992 Apr 3;256(5053):100–102. doi: 10.1126/science.1348870. [DOI] [PubMed] [Google Scholar]
  13. Licht P., Wood J. F., Wood F. E. Annual and diurnal cycles in plasma testosterone and thyroxine in the male green sea turtle Chelonia mydas. Gen Comp Endocrinol. 1985 Mar;57(3):335–344. doi: 10.1016/0016-6480(85)90212-6. [DOI] [PubMed] [Google Scholar]
  14. McElroy D., Moran P., Bermingham E., Kornfield I. REAP: an integrated environment for the manipulation and phylogenic analysis of restriction data. J Hered. 1992 Mar-Apr;83(2):157–158. doi: 10.1093/oxfordjournals.jhered.a111180. [DOI] [PubMed] [Google Scholar]
  15. Michalakis Y., Excoffier L. A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics. 1996 Mar;142(3):1061–1064. doi: 10.1093/genetics/142.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nauta M. J., Weissing F. J. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics. 1996 Jun;143(2):1021–1032. doi: 10.1093/genetics/143.2.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3321–3323. doi: 10.1073/pnas.70.12.3321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Norman J. A., Moritz C., Limpus C. J. Mitochondrial DNA control region polymorphisms: genetic markers for ecological studies of marine turtles. Mol Ecol. 1994 Aug;3(4):363–373. doi: 10.1111/j.1365-294x.1994.tb00076.x. [DOI] [PubMed] [Google Scholar]
  19. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  20. Palumbi S. R., Baker C. S. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol. 1994 May;11(3):426–435. doi: 10.1093/oxfordjournals.molbev.a040115. [DOI] [PubMed] [Google Scholar]
  21. Pogson G. H., Mesa K. A., Boutilier R. G. Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics. 1995 Jan;139(1):375–385. doi: 10.1093/genetics/139.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Scribner K. T., Arntzen J. W., Burke T. Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Mol Biol Evol. 1994 Sep;11(5):737–748. doi: 10.1093/oxfordjournals.molbev.a040154. [DOI] [PubMed] [Google Scholar]
  23. Shriver M. D., Jin L., Boerwinkle E., Deka R., Ferrell R. E., Chakraborty R. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol Biol Evol. 1995 Sep;12(5):914–920. doi: 10.1093/oxfordjournals.molbev.a040268. [DOI] [PubMed] [Google Scholar]
  24. Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987 May 15;236(4803):787–792. doi: 10.1126/science.3576198. [DOI] [PubMed] [Google Scholar]
  26. Slatkin M. Hitchhiking and associative overdominance at a microsatellite locus. Mol Biol Evol. 1995 May;12(3):473–480. doi: 10.1093/oxfordjournals.molbev.a040222. [DOI] [PubMed] [Google Scholar]
  27. Valsecchi E., Palsbøll P., Hale P., Glockner-Ferrari D., Ferrari M., Clapham P., Larsen F., Mattila D., Sears R., Sigurjonsson J. Microsatellite genetic distances between oceanic populations of the humpback whale (Megaptera novaeangliae). Mol Biol Evol. 1997 Apr;14(4):355–362. doi: 10.1093/oxfordjournals.molbev.a025771. [DOI] [PubMed] [Google Scholar]
  28. Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]
  29. Zhang Q., Maroof M. A., Kleinhofs A. Comparative diversity analysis of RFLPs and isozymes within and among populations of Hordeum vulgare ssp. spontaneum. Genetics. 1993 Jul;134(3):909–916. doi: 10.1093/genetics/134.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES