Abstract
A large microsatellite data set from three species of bear (Ursidae) was used to empirically test the performance of six genetic distance measures in resolving relationships at a variety of scales ranging from adjacent areas in a continuous distribution to species that diverged several million years ago. At the finest scale, while some distance measures performed extremely well, statistics developed specifically to accommodate the mutational processes of microsatellites performed relatively poorly, presumably because of the relatively higher variance of these statistics. At the other extreme, no statistic was able to resolve the close sister relationship of polar bears and brown bears from more distantly related pairs of species. This failure is most likely due to constraints on allele distributions at microsatellite loci. At intermediate scales, both within continuous distributions and in comparisons to insular populations of late Pleistocene origin, it was not possible to define the point where linearity was lost for each of the statistics, except that it is clearly lost after relatively short periods of independent evolution. All of the statistics were affected by the amount of genetic diversity within the populations being compared, significantly complicating the interpretation of genetic distance data.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos W., Sawcer S. J., Feakes R. W., Rubinsztein D. C. Microsatellites show mutational bias and heterozygote instability. Nat Genet. 1996 Aug;13(4):390–391. doi: 10.1038/ng0896-390. [DOI] [PubMed] [Google Scholar]
- Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
- Bruford M. W., Wayne R. K. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev. 1993 Dec;3(6):939–943. doi: 10.1016/0959-437x(93)90017-j. [DOI] [PubMed] [Google Scholar]
- Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
- Craighead L., Paetkau D., Reynolds H. V., Vyse E. R., Strobeck C. Microsatellite analysis of paternity and reproduction in Arctic grizzly bears. J Hered. 1995 Jul-Aug;86(4):255–261. doi: 10.1093/oxfordjournals.jhered.a111578. [DOI] [PubMed] [Google Scholar]
- Eichler E. E., Holden J. J., Popovich B. W., Reiss A. L., Snow K., Thibodeau S. N., Richards C. S., Ward P. A., Nelson D. L. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet. 1994 Sep;8(1):88–94. doi: 10.1038/ng0994-88. [DOI] [PubMed] [Google Scholar]
- Ellegren H., Primmer C. R., Sheldon B. C. Microsatellite 'evolution': directionality or bias? Nat Genet. 1995 Dec;11(4):360–362. doi: 10.1038/ng1295-360. [DOI] [PubMed] [Google Scholar]
- Feldman M. W., Bergman A., Pollock D. D., Goldstein D. B. Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics. 1997 Jan;145(1):207–216. doi: 10.1093/genetics/145.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FitzSimmons N. N., Moritz C., Moore S. S. Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol Biol Evol. 1995 May;12(3):432–440. doi: 10.1093/oxfordjournals.molbev.a040218. [DOI] [PubMed] [Google Scholar]
- Garza J. C., Slatkin M., Freimer N. B. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol Biol Evol. 1995 Jul;12(4):594–603. doi: 10.1093/oxfordjournals.molbev.a040239. [DOI] [PubMed] [Google Scholar]
- Goldstein D. B., Ruiz Linares A., Cavalli-Sforza L. L., Feldman M. W. An evaluation of genetic distances for use with microsatellite loci. Genetics. 1995 Jan;139(1):463–471. doi: 10.1093/genetics/139.1.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KIMURA M., CROW J. F. THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. Genetics. 1964 Apr;49:725–738. doi: 10.1093/genetics/49.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nauta M. J., Weissing F. J. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics. 1996 Jun;143(2):1021–1032. doi: 10.1093/genetics/143.2.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Roychoudhury A. K. Sampling variances of heterozygosity and genetic distance. Genetics. 1974 Feb;76(2):379–390. doi: 10.1093/genetics/76.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol. 1983;19(2):153–170. doi: 10.1007/BF02300753. [DOI] [PubMed] [Google Scholar]
- Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
- Ostrander E. A., Sprague G. F., Jr, Rine J. Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics. 1993 Apr;16(1):207–213. doi: 10.1006/geno.1993.1160. [DOI] [PubMed] [Google Scholar]
- Paetkau D., Strobeck C. Microsatellite analysis of genetic variation in black bear populations. Mol Ecol. 1994 Oct;3(5):489–495. doi: 10.1111/j.1365-294x.1994.tb00127.x. [DOI] [PubMed] [Google Scholar]
- Pemberton J. M., Slate J., Bancroft D. R., Barrett J. A. Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol. 1995 Apr;4(2):249–252. doi: 10.1111/j.1365-294x.1995.tb00214.x. [DOI] [PubMed] [Google Scholar]
- Rubinsztein D. C., Amos W., Leggo J., Goodburn S., Jain S., Li S. H., Margolis R. L., Ross C. A., Ferguson-Smith M. A. Microsatellite evolution--evidence for directionality and variation in rate between species. Nat Genet. 1995 Jul;10(3):337–343. doi: 10.1038/ng0795-337. [DOI] [PubMed] [Google Scholar]
- Shriver M. D., Jin L., Boerwinkle E., Deka R., Ferrell R. E., Chakraborty R. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol Biol Evol. 1995 Sep;12(5):914–920. doi: 10.1093/oxfordjournals.molbev.a040268. [DOI] [PubMed] [Google Scholar]
- Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995 Jan;139(1):457–462. doi: 10.1093/genetics/139.1.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takezaki N., Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996 Sep;144(1):389–399. doi: 10.1093/genetics/144.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talbot S. L., Shields G. F. A phylogeny of the bears (Ursidae) inferred from complete sequences of three mitochondrial genes. Mol Phylogenet Evol. 1996 Jun;5(3):567–575. doi: 10.1006/mpev.1996.0051. [DOI] [PubMed] [Google Scholar]
- Talbot S. L., Shields G. F. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae. Mol Phylogenet Evol. 1996 Jun;5(3):477–494. doi: 10.1006/mpev.1996.0044. [DOI] [PubMed] [Google Scholar]
- Tautz D., Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984 May 25;12(10):4127–4138. doi: 10.1093/nar/12.10.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber J. L., Wong C. Mutation of human short tandem repeats. Hum Mol Genet. 1993 Aug;2(8):1123–1128. doi: 10.1093/hmg/2.8.1123. [DOI] [PubMed] [Google Scholar]