Skip to main content
Genetics logoLink to Genetics
. 1997 Dec;147(4):1965–1975. doi: 10.1093/genetics/147.4.1965

Hardy-Weinberg Testing for Continuous Data

L M McIntyre 1, B S Weir 1
PMCID: PMC1208361  PMID: 9409851

Abstract

Estimation of allelic and genotypic distributions for continuous data using kernel density estimation is discussed and illustrated for some variable number of tandem repeat data. These kernel density estimates provide a useful representation of data when only some of the many variants at a locus are present in a sample. Two Hardy-Weinberg test procedures are introduced for continuous data: a continuous chi-square test with test statistic T(CCS) and a test based on Hellinger's distance with test statistic T(HD). Simulations are used to compare the powers of these tests to each other and to the powers of a test of intraclass correlation T(IC), as well as to the power of Fisher's exact test T(FET) applied to discretized data. Results indicate that the power of T(CCS) is better than that of T(HD), but neither is as powerful as T(FET). The intraclass correlation test does not perform as well as the other tests examined in this article.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balazs I., Baird M., Clyne M., Meade E. Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet. 1989 Feb;44(2):182–190. [PMC free article] [PubMed] [Google Scholar]
  2. Buckleton J., Walsh K., Triggs C. M. A continuous model for interpreting the positions of bands in DNA locus-specific work. J Forensic Sci Soc. 1991 Jul-Sep;31(3):353–363. doi: 10.1016/s0015-7368(91)73168-x. [DOI] [PubMed] [Google Scholar]
  3. Budowle B., Giusti A. M., Waye J. S., Baechtel F. S., Fourney R. M., Adams D. E., Presley L. A., Deadman H. A., Monson K. L. Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons. Am J Hum Genet. 1991 May;48(5):841–855. [PMC free article] [PubMed] [Google Scholar]
  4. Chakraborty R., Srinivasan M. R., de Andrade M. Intraclass and interclass correlations of allele sizes within and between loci in DNA typing data. Genetics. 1993 Feb;133(2):411–419. doi: 10.1093/genetics/133.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devlin B., Risch N., Roeder K. Estimation of allele frequencies for VNTR loci. Am J Hum Genet. 1991 Apr;48(4):662–676. [PMC free article] [PubMed] [Google Scholar]
  6. Evett I. W., Scranage J., Pinchin R. An illustration of the advantages of efficient statistical methods for RFLP analysis in forensic science. Am J Hum Genet. 1993 Mar;52(3):498–505. [PMC free article] [PubMed] [Google Scholar]
  7. Hamilton J. F., Starling L., Cordiner S. J., Monahan D. L., Buckleton J. S., Chambers G. K., Weir B. S. New Zealand population data at five VNTR loci: validation as databases for forensic identity testing. Sci Justice. 1996 Apr-Jun;36(2):109–117. doi: 10.1016/S1355-0306(96)72575-3. [DOI] [PubMed] [Google Scholar]
  8. Hartmann J., Keister R., Houlihan B., Thompson L., Baldwin R., Buse E., Driver B., Kuo M. Diversity of ethnic and racial VNTR RFLP fixed-bin frequency distributions. Am J Hum Genet. 1994 Dec;55(6):1268–1278. [PMC free article] [PubMed] [Google Scholar]
  9. Johnson G. B. Hidden alleles at the alpha-glycerophosphate dehydrogenase locus in Colias butterflies. Genetics. 1976 May;83(1):149–167. doi: 10.1093/genetics/83.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maiste P. J., Weir B. S. A comparison of tests for independence in the FBI RFLP data bases. Genetica. 1995;96(1-2):125–138. doi: 10.1007/BF01441158. [DOI] [PubMed] [Google Scholar]
  11. Morris J. W., Sanda A. I., Glassberg J. Biostatistical evaluation of evidence from continuous allele frequency distribution deoxyribonucleic acid (DNA) probes in reference to disputed paternity and identity. J Forensic Sci. 1989 Nov;34(6):1311–1317. [PubMed] [Google Scholar]
  12. Prout T., Barker J. S. F statistics in Drosophila buzzatii: selection, population size and inbreeding. Genetics. 1993 May;134(1):369–375. doi: 10.1093/genetics/134.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Weir B. S. Independence of VNTR alleles defined as fixed bins. Genetics. 1992 Apr;130(4):873–887. doi: 10.1093/genetics/130.4.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weir B. S. Independence of VNTR alleles defined as floating bins. Am J Hum Genet. 1992 Nov;51(5):992–997. [PMC free article] [PubMed] [Google Scholar]
  15. Weir B. S. Independence tests for VNTR alleles defined as quantile bins. Am J Hum Genet. 1993 Nov;53(5):1107–1113. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES