Skip to main content
Genetics logoLink to Genetics
. 1972 Feb;70(2):187–203. doi: 10.1093/genetics/70.2.187

Recombination and Transfection Mapping of Cistron 5 of Bacteriophage Sp82g

D MacDonald Green, Margeret I Urban
PMCID: PMC1212727  PMID: 17248556

Abstract

Recombination between transfecting SP82G DNA molecules has been studied in Bacillus subtilis. Recombinant progeny issuing from transfected cells show many of the features that characterize progeny production in multiplicity reactivated bacteriophage, such as: majority recombinant clones, non-reciprocity of recombinant clones and the frequent absence of input alleles. While transfection substantially lowers the linkage observed between markers in normal phage crosses, linkage is observed at small map distances in transfection either by plating transfected bacteria or the progeny phage. Maps constructed from transfection crosses are identical to those of normal phage crosses, except in magnitude.—Examination of the concentration response of two marker biparental crosses, and three marker triparental crosses using transfecting DNA leads to the conclusion that at all concentrations, transfective centers are saturated with respect to the number of molecules that can be taken up. Thus, the frequency of recombinant infective centers, or recombinant progeny is independent of concentration effects.

Full Text

The Full Text of this article is available as a PDF (841.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. EPSTEIN R. H. A study of multiplicity-reactivation in the bacteriophage T4. I. Genetic and functional analysis of T4D-K12(lambda) complexes. Virology. 1958 Oct;6(2):382–404. doi: 10.1016/0042-6822(58)90090-4. [DOI] [PubMed] [Google Scholar]
  2. GREEN D. M. INFECTIVITY OF DNA ISOLATED FROM BACILLUS SUBTILIS BACTERIOPHAGE, SP82. J Mol Biol. 1964 Dec;10:438–451. doi: 10.1016/s0022-2836(64)80065-6. [DOI] [PubMed] [Google Scholar]
  3. NESTER E. W., LEDERBERG J. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc Natl Acad Sci U S A. 1961 Jan 15;47:52–55. doi: 10.1073/pnas.47.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. OKUBO S., STRAUSS B., STODOLSKY M. THE POSSIBLE ROLE OF RECOMBINATION IN THE INFECTION OF COMPETENT BACILLUS SUBTILIS BY BACTERIOPHAGE DEOXYRIBONUCLEIC ACID. Virology. 1964 Dec;24:552–562. doi: 10.1016/0042-6822(64)90207-7. [DOI] [PubMed] [Google Scholar]
  5. REILLY B. E., SPIZIZEN J. BACTERIOPHAGE DEOXYRIBONUCLEATE INFECTION OF COMPETENT BACILLUS SUBTILIS. J Bacteriol. 1965 Mar;89:782–790. doi: 10.1128/jb.89.3.782-790.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES