Abstract
A mutant of Neurospora crassa, called UW-6, differs from wild type in being partially constitutive for synthesis of a species of alkaline phosphatase, and also for a species of phosphate permease that has a high affinity for phosphate at high pH. UW-6 is possibly allelic with a mutant called nuc-2 that was previously isolated by Ishikawa. nuc-2 has the converse phenotype, in that it cannot be derepressed for either of these two activities. UW-6 is co-dominant with its wild-type allele in heterokaryons and in partial diploids. An unlinked mutant, nuc-1, is like nuc-2 in that it fails to make the alkaline phosphatase or the permease referred to above. nuc-1 is epistatic to UW-6 in the double mutant. The control of phosphorus metabolism is discussed, and is compared with some other control systems in filamentous fungi.
Full Text
The Full Text of this article is available as a PDF (844.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atwood K C, Mukai F. Nuclear Distribution in Conidia of Neurospora Heterokaryons. Genetics. 1955 Jul;40(4):438–443. doi: 10.1093/genetics/40.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burton E. G., Metzenberg R. L. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa. J Bacteriol. 1972 Jan;109(1):140–151. doi: 10.1128/jb.109.1.140-151.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cove D. J. Evidence for a near limiting intracellular concentration of a regulator substance. Nature. 1969 Oct 18;224(5216):272–273. doi: 10.1038/224272b0. [DOI] [PubMed] [Google Scholar]
- Glenn A. R., Mandelstam J. Sporulation in Bacillus subtilis 168. Comparison of alkaline phosphatase from sporulating and vegetative cells. Biochem J. 1971 Jun;123(2):129–138. doi: 10.1042/bj1230129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasunuma K., Ishikawa T. Properties of two nuclease genes in Neurospora crassa. Genetics. 1972 Mar;70(3):371–384. doi: 10.1093/genetics/70.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KUO M. H., BLUMENTHAL H. J. An alkaline phosphomonoesterase from Neurospora crassa. Biochim Biophys Acta. 1961 Nov 25;54:101–109. doi: 10.1016/0006-3002(61)90942-8. [DOI] [PubMed] [Google Scholar]
- Kadner R. J., Nyc J. F. Repressible alkaline phosphatase in Neurospora crassa. 3. Enzymatic properties. J Biol Chem. 1969 Oct 10;244(19):5125–5130. [PubMed] [Google Scholar]
- Kerr D. S., Flavin M. The regulation of methionine synthesis and the nature of cystathionine gamma-synthase in Neurospora. J Biol Chem. 1970 Apr 10;245(7):1842–1855. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Marzluf G. A. Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa. Arch Biochem Biophys. 1970 May;138(1):254–263. doi: 10.1016/0003-9861(70)90306-1. [DOI] [PubMed] [Google Scholar]
- Marzluf G. A., Metzenberg R. L. Positive control by the cys-3 locus in regulation of sulfur metabolism in Neurospora. J Mol Biol. 1968 Apr 28;33(2):423–437. doi: 10.1016/0022-2836(68)90199-x. [DOI] [PubMed] [Google Scholar]
- Metzenberg R. L., Ahlgren S. K. Structural and regulatory control of aryl sulfatase in Neurospora: the use of interspecific differences in structural genes. Genetics. 1971 Jul;68(3):369–381. doi: 10.1093/genetics/68.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzenberg R. L., Parson J. W. Altered repression of some enzymes of sulfur utilization in a temperature-conditional lethal mutant of Neurospora. Proc Natl Acad Sci U S A. 1966 Mar;55(3):629–635. doi: 10.1073/pnas.55.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metzenberg R. L. Repair of multiple defects of a regulatory mutant of Neurospora by high osmotic pressure and by reversion. Arch Biochem Biophys. 1968 May;125(2):532–541. doi: 10.1016/0003-9861(68)90611-5. [DOI] [PubMed] [Google Scholar]
- Nyc J. F., Kadner R. J., Crocken B. J. A repressible alkaline phosphatase in Neurospora crassa. J Biol Chem. 1966 Apr 10;241(7):1468–1472. [PubMed] [Google Scholar]
- Pratt C., Gallant J. Growth instability of the alkaline phosphatase repressor. J Mol Biol. 1973 Apr 5;75(2):433–435. doi: 10.1016/0022-2836(73)90033-8. [DOI] [PubMed] [Google Scholar]
- RAGLAND J. B. The role of ATP-sulfurylase in the biosynthesis of cysteine and methionine by Neurospora. Arch Biochem Biophys. 1959 Oct;84:541–542. doi: 10.1016/0003-9861(59)90614-9. [DOI] [PubMed] [Google Scholar]
- Toh-E A., Ishikawa T. Genetic control of the synthesis of repressible phosphatases in Neurospora crassa. Genetics. 1971 Nov;69(3):339–351. doi: 10.1093/genetics/69.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valone J. A., Jr, Case M. E., Giles N. H. Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1555–1559. doi: 10.1073/pnas.68.7.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkins A. S. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):616–623. doi: 10.1128/jb.110.2.616-623.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]