Abstract
The survival of the ρ+ factor and of DrugR mitochondrial genetic markers after exposure to ethidium bromide has been studied. A technique allowing the determination of DrugR genetic markers among a great number of both grande and petite colonies has been developed. The results have been analyzed by the target theory. The survival of the ρ+ factor is always less than the survival of any DrugR genetic marker. The survivals of CR and ER are similar to each other, while that of OR is greater than that of the other two DrugR markers. All possible combinations of DrugR markers have been found among the ρ- petite cells induced, while the only type found among the grande colonies is the preexisting one. The loss of the CR and ER genetic markers was found to be the most frequently concomitant, while the correlation between the loss of the OR marker and the other two DrugR markers is less strong. Similar results have been obtained after U.V. irradiation. Interpretations concerning the structure of the yeast mitochondrial genome are given and hypotheses on the mechanism of petite mutation discussed.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borst P., Kroon A. M. Mitochondrial DNA: physicochemical properties, replication, and genetic function. Int Rev Cytol. 1969;26:107–190. doi: 10.1016/s0074-7696(08)61635-6. [DOI] [PubMed] [Google Scholar]
- CHEN S., EPHRUSSI B., HOTTINGUER H. Nature génétique des mutants à déficience respiratoire de la souche B-11 de la le levure de boulangerie. Heredity (Edinb) 1950 Dec;4(3):337–351. doi: 10.1038/hdy.1950.26. [DOI] [PubMed] [Google Scholar]
- Carnevali F., Morpurgo G., Tecce G. Cytoplasmic DNA from petite colonies of Saccharomyces cerevisiae: a hypothesis on the nature of the mutation. Science. 1969 Mar 21;163(3873):1331–1333. doi: 10.1126/science.163.3873.1331. [DOI] [PubMed] [Google Scholar]
- Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
- Gingold E. B., Saunders G. W., Lukins H. B., Linnane A. W. Biogenesis of mitochondria, X. Reassortment of the cytoplasmic genetic determinants for respiratory competence and erythromycin resistance in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):735–744. [PMC free article] [PubMed] [Google Scholar]
- Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
- Goldring E. S., Grossman L. I., Marmur J. Petite mutation in yeast. II. Isolation of mutants containing mitochondrial deoxyribonucleic acid of reduced size. J Bacteriol. 1971 Jul;107(1):377–381. doi: 10.1128/jb.107.1.377-381.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleese R. A., Grotbeck R. C., Snyder J. R. Recombination among three mitochondrial genes in yeast (Saccharomyces cerevisiae). J Bacteriol. 1972 Nov;112(2):1023–1025. doi: 10.1128/jb.112.2.1023-1025.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnane A. W., Saunders G. W., Gingold E. B., Lukins H. B. The biogenesis of mitochondria. V. Cytoplasmic inheritance of erythromycin resistance in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1968 Mar;59(3):903–910. doi: 10.1073/pnas.59.3.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahler H. R., Perlman P. S. Mitochondrial membranes and mutagnesis by ethidium bromide. J Supramol Struct. 1972;1(2):105–124. doi: 10.1002/jss.400010204. [DOI] [PubMed] [Google Scholar]
- Nordström K. Induction of the petite mutation in Saccharomyces cerevisiae by N-methyl-N'-nitro-N-nitrosoguanidine. J Gen Microbiol. 1967 Aug;48(2):277–281. doi: 10.1099/00221287-48-2-277. [DOI] [PubMed] [Google Scholar]
- PITTMAN D., RANGANATHAN B., WILSON F. Photoreactivation studies on yeasts. II. Photoreactivation of the ultraviolet damage producing respiratory deficiency in haploid and tetraploid yeasts. Exp Cell Res. 1959 Jun;17(3):368–377. doi: 10.1016/0014-4827(59)90057-6. [DOI] [PubMed] [Google Scholar]
- Perlman P. S., Mahler H. R. Molecular consequences of ethidium bromide mutagenesis. Nat New Biol. 1971 May 5;231(18):12–16. [PubMed] [Google Scholar]
- Piperno G., Fonty G., Bernardi G. The mitochondrial genome of wild-type yeast cells. II. Investigations on the compositional heterogeneity of mitochondrial DNA. J Mol Biol. 1972 Mar 28;65(2):191–205. doi: 10.1016/0022-2836(72)90276-8. [DOI] [PubMed] [Google Scholar]
- RAUT C., SIMPSON W. L. The effect of x-rays and of ultraviolet light of different wavelengths on the production of cytochrome-deficient yeasts. Arch Biochem Biophys. 1955 Jul;57(1):218–228. doi: 10.1016/0003-9861(55)90194-6. [DOI] [PubMed] [Google Scholar]
- SHERMAN F. The effects of elevated temperatures on yeast. II. Induction of respiratory-deficient mutants. J Cell Comp Physiol. 1959 Aug;54:37–52. doi: 10.1002/jcp.1030540106. [DOI] [PubMed] [Google Scholar]
- Shannon C., Rao A., Douglass S., Criddle R. S. Recombination in yeast mitochondrial DNA. J Supramol Struct. 1972;1(2):145–152. doi: 10.1002/jss.400010207. [DOI] [PubMed] [Google Scholar]
- Slonimski P. P., Perrodin G., Croft J. H. Ethidium bromide induced mutation of yeast mitochondria: complete transformation of cells into respiratory deficient non-chromosomal "petites". Biochem Biophys Res Commun. 1968 Feb 15;30(3):232–239. doi: 10.1016/0006-291x(68)90440-3. [DOI] [PubMed] [Google Scholar]
- Sugimura T., Okabe K., Imamura A. Number of cytoplasmic factors in yeast cells. Nature. 1966 Oct 15;212(5059):304–304. doi: 10.1038/212304a0. [DOI] [PubMed] [Google Scholar]
- Thomas D. Y., Wilkie D. Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet Res. 1968 Feb;11(1):33–41. doi: 10.1017/s0016672300011174. [DOI] [PubMed] [Google Scholar]
- Wakabayashi K., Gunge N. Extrachromosomal inheritance of oligomycin resistance in yeast. FEBS Lett. 1970 Feb 25;6(4):302–304. doi: 10.1016/0014-5793(70)80083-7. [DOI] [PubMed] [Google Scholar]
- Whittaker P. A., Hammond R. C., Luha A. A. Mechanism of mitochondrial mutation in yeast. Nat New Biol. 1972 Aug 30;238(87):266–268. doi: 10.1038/newbio238266a0. [DOI] [PubMed] [Google Scholar]
- Whittaker P. A., Wright M. Prevention by cycloheximide of petite mutation in yeast. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1455–1459. doi: 10.1016/0006-291x(72)90877-7. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Maroudas N. G., Wilkie D. Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Mol Gen Genet. 1971;111(3):209–223. doi: 10.1007/BF00433106. [DOI] [PubMed] [Google Scholar]
- Wolf K., Dujon B., Slonimski P. P. Mitochondrial genetics. V. Multifactorial mitochondrial crosses involving a mutation conferring paromomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet. 1973 Sep 5;125(1):53–90. doi: 10.1007/BF00292983. [DOI] [PubMed] [Google Scholar]