Abstract
Late larval and pupal lethal mutants of Drosophila define those gene functions which are essential for the development of pupae (metamorphosis) but not for embryonic or larval development. In a previous report the isolation of a large number of such mutants was outlined, and a description of the imaginal disc defects in those mutants was described. This report concerns genetic analysis of those mutants. 3746 different pairwise combinations of mutants have been tested for complementation. Only 10 pairs fail to complement. In all of the cases tested, the lethal mutation in each member of a non-complementing pair has a similar map location. In addition to the non-complementing pairs one group of seven partially-complementing mutants has been identified.
Comparisons of the imaginal disc defects within the non-complementing pairs and the lethal hybrids formed by the respective pairs were made to test for uniformity of phenotype. No significant qualitative differences were detected between any non-complementing pairs or their respective hybrids.
Full Text
The Full Text of this article is available as a PDF (710.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Whitfield H. J., Jr Frameshift mutagenesis in Salmonella. Cold Spring Harb Symp Quant Biol. 1966;31:221–225. doi: 10.1101/sqb.1966.031.01.030. [DOI] [PubMed] [Google Scholar]
- Benzer S. ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. Proc Natl Acad Sci U S A. 1961 Mar;47(3):403–415. doi: 10.1073/pnas.47.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson E. A., Sederoff R., Cogan M. Evidence favoring a frame shift mechanism for ICR-170 induced mutations in Drosophila melanogaster. Genetics. 1967 Feb;55(2):295–313. doi: 10.1093/genetics/55.2.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAREN A., GAREN S. Complementation in vivo between structural mutants of alkaline phosphatase from E. coli. J Mol Biol. 1963 Jul;7:13–22. doi: 10.1016/s0022-2836(63)80015-7. [DOI] [PubMed] [Google Scholar]
- Hochman B. Analysis of chromosome 4 in Drosophila melanogaster. II. Ethyl methanesulfonate induced lethals. Genetics. 1971 Feb;67(2):235–252. doi: 10.1093/genetics/67.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holden J. J., Suzuki D. T. Temperature-sensitive mutations in Drosophila melanogaster. XII. The genetic and developmental effects of dominant lethals on chromosome 3. Genetics. 1973 Mar;73(3):445–458. doi: 10.1093/genetics/73.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Judd B. H., Shen M. W., Kaufman T. C. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics. 1972 May;71(1):139–156. doi: 10.1093/genetics/71.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lifschytz E., Falk R. Fine structure analysis of a chromosome segment in Drosophila melanogaster: analysis of ethyl methanesulphonate-induced lethals. Mutat Res. 1969 Jul-Aug;8(1):147–155. doi: 10.1016/0027-5107(69)90149-3. [DOI] [PubMed] [Google Scholar]
- Shannon M. P., Kaufman T. C., Shen M. W., Judd B. H. Lethality patterns and morphology of selected lethal and semi-lethal mutations in the zeste-white region of Drosophila melanogaster. Genetics. 1972 Dec;72(4):615–638. doi: 10.1093/genetics/72.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]