Skip to main content
Genetics logoLink to Genetics
. 1974 May;77(1):25–43. doi: 10.1093/genetics/77.1.25

Genetic Control of Alkaline Phosphatase Synthesis in Neurospora: The Use of Partial Diploids in Dominance Studies

Robert L Metzenberg 1, Mary K Gleason 1, Barbara S Littlewood 1
PMCID: PMC1213116  PMID: 4276359

Abstract

In wild-type Neurospora, alkaline phosphatase is made under conditions of phosphate limitation, but not conditions of phosphate sufficiency. Mutants at two unlinked loci, nuc-1 and nuc-2, do not make alkaline phosphatase under any conditions, while mutants at two quite closely linked loci, pcon and preg, make alkaline phosphatase even under conditions of phosphate sufficiency. pcon is extremely closely linked to nuc-2. nuc-2 and pregc (constitutive) mutants are recessive to their wild-type alleles in partial diploids as well as in heterokaryons, while pconc mutants are dominant or co-dominant. nuc-1 is epistatic to both pconc and pregc mutants. The implications of these findings for theories of metabolic control in eukaryotes are briefly discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ishikawa T., Toh-E A., Uno I., Hasunuma K. Isolation and characterization of nuclease mutants in Neurospora crassa. Genetics. 1969 Sep;63(1):75–92. doi: 10.1093/genetics/63.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lehman J. F., Gleason M. K., Ahlgren S. K., Metzenberg R. L. Regulation of phosphate metabolism in Neurospora crassa. Characterization of regulatory mutants. Genetics. 1973 Sep;75(1):61–73. doi: 10.1093/genetics/75.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Polacco J. C., Gross S. R. The product of the leu-3 cistron as a regulatory element for the production of the leucine biosynthetic enzymes of Neurospora. Genetics. 1973 Jul;74(3):443–459. doi: 10.1093/genetics/74.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rines H. W., Case M. E., Giles N. H. Mutants in the arom gene cluster of Neurospora crassa specific for biosynthetic dehydroquinase. Genetics. 1969 Apr;61(4):789–800. doi: 10.1093/genetics/61.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. STRICKLAND W. N. A rapid method for obtaining unordered Neurospora tetrads. J Gen Microbiol. 1960 Apr;22:583–588. doi: 10.1099/00221287-22-2-583. [DOI] [PubMed] [Google Scholar]
  6. Shanfield B., Käfer E. Chemical induction of mitotic recombination in Aspergillus nidulans. Genetics. 1971 Feb;67(2):209–219. doi: 10.1093/genetics/67.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stadler D. R., Towe A. M. A test of coincident recombination in closely linked genes of Neurospora. Genetics. 1968 Mar;58(3):327–336. doi: 10.1093/genetics/58.3.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Toh-E A., Ishikawa T. Genetic control of the synthesis of repressible phosphatases in Neurospora crassa. Genetics. 1971 Nov;69(3):339–351. doi: 10.1093/genetics/69.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Turner B. C., Taylor C. W., Perkins D. D., Newmeyer D. New duplication-generating inversions in Neurospora. Can J Genet Cytol. 1969 Sep;11(3):622–638. doi: 10.1139/g69-075. [DOI] [PubMed] [Google Scholar]
  10. Valone J. A., Jr, Case M. E., Giles N. H. Constitutive mutants in a regulatory gene exerting positive control of quinic acid catabolism in Neurospora crassa. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1555–1559. doi: 10.1073/pnas.68.7.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES