Skip to main content
Genetics logoLink to Genetics
. 1974 Jul;77(3):569–589. doi: 10.1093/genetics/77.3.569

Genetic Load in Natural Populations: Is It Compatible with the Hypothesis That Many Polymorphisms Are Maintained by Natural Selection?

Martin L Tracey 1, Francisco J Ayala 1
PMCID: PMC1213149  PMID: 4213125

Abstract

Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. W. Selection in experimental populations. I. Lethal genes. Genetics. 1969 Jul;62(3):653–672. doi: 10.1093/genetics/62.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ayala F. J., Anderson W. W. Evidence of natural selection in molecular evolution. Nat New Biol. 1973 Feb 28;241(113):274–276. doi: 10.1038/newbio241274a0. [DOI] [PubMed] [Google Scholar]
  3. Ayala F. J., Powell J. R., Dobzhansky T. Polymorphisms in continental and island populations of Drosophila willistoni. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2480–2483. doi: 10.1073/pnas.68.10.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ayala F. J., Powell J. R., Tracey M. L., Mourão C. A., Pérez-Salas S. Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni. Genetics. 1972 Jan;70(1):113–139. doi: 10.1093/genetics/70.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brncic D. Non Random Association of Inversions in Drosophila Pavani. Genetics. 1961 Apr;46(4):401–406. doi: 10.1093/genetics/46.4.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CANNON G. B. The effects of natural selection on linkage disequilibrium and relative fitness in experimental populations of Drosophila melanogaster. Genetics. 1963 Sep;48:1201–1216. doi: 10.1093/genetics/48.9.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Charlesworth B., Charlesworth D. A study of linkage disequilibrium in populations of Drosophila melanogaster. Genetics. 1973 Feb;73(2):351–359. doi: 10.1093/genetics/73.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franklin I., Lewontin R. C. Is the gene the unit of selection? Genetics. 1970 Aug;65(4):707–734. doi: 10.1093/genetics/65.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Karlin S., Feldman M. W. Linkage and selection: two locus symmetric viability model. Theor Popul Biol. 1970 May;1(1):39–71. doi: 10.1016/0040-5809(70)90041-9. [DOI] [PubMed] [Google Scholar]
  10. LEVITAN M. Non-random association of inversions. Cold Spring Harb Symp Quant Biol. 1958;23:251–268. doi: 10.1101/sqb.1958.023.01.027. [DOI] [PubMed] [Google Scholar]
  11. Lewontin R C. The Interaction of Selection and Linkage. I. General Considerations; Heterotic Models. Genetics. 1964 Jan;49(1):49–67. doi: 10.1093/genetics/49.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lewontin R. C., Hubby J. L. A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics. 1966 Aug;54(2):595–609. doi: 10.1093/genetics/54.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marinkovic D. Genetic loads affecting fertility in natural populations of Drosophila pseudoobscura. Genetics. 1967 Nov;57(3):701–709. doi: 10.1093/genetics/57.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mourão C. A., Ayala F. J., Anderson W. W. Darwinian fitness and adaptedness in experimental populations of Drosophilia willistoni. Genetica. 1972;43(4):552–574. doi: 10.1007/BF00115598. [DOI] [PubMed] [Google Scholar]
  15. Polivanov S., Anderson W. W. Selection in experimental populations. II. Components of selection and their fluctuations in two populations of Drosophila melanogaster. Genetics. 1969 Dec;63(4):919–932. doi: 10.1093/genetics/63.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yarbrough K., Kojima K. I. The mode of selection at the polymorphic esterase 6 locus in cage populations of Drosophila melanogaster. Genetics. 1967 Nov;57(3):677–686. doi: 10.1093/genetics/57.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES