Abstract
Ultraviolet mutagenesis and its repair were studied mainly in WU36-10-89, a uvr- strain of Escherichia coli containing a UAG mutation in a gene for leucine biosynthesis. Following ultraviolet (UV) irradiation revertants appearing with or without direct photoreactivation (PR) were classified according to the presence and type of suppressor they contained. We find UV mutation production to be quite specific. An analysis of revertants produced by UV indicates they are formed mainly from GC → AT and that the miscoding is due to a cytosine residue at the site of mutation in a cytosine-thymine (CT) dimer. We propose that the dimer serves as template during some aspects of repair replication and at the time of replication the C in the dimer directs the insertion of A in the complementary strand. We also note that C → A and T →G changes caused by a CT dimer occur much less frequently.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bridges B. A., Munson R. J. The persistence through several replication cycles of mutation-producing pyrimidine dimers in a strain of Escherichia coli deficient in excision-repair. Biochem Biophys Res Commun. 1968 Mar 27;30(6):620–624. doi: 10.1016/0006-291x(68)90557-3. [DOI] [PubMed] [Google Scholar]
- Cheung M. K., Bockrath R. C. On the specificity of UV mutagenesis in E. coli. Mutat Res. 1970 Nov;10(5):521–523. doi: 10.1016/0027-5107(70)90015-1. [DOI] [PubMed] [Google Scholar]
- Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and the rec system in excision-repair in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1156–1160. doi: 10.1073/pnas.69.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Folk W. R., Yaniv M. Coding properties and nucleotide sequences of E. coli glutamine tRNAs. Nat New Biol. 1972 Jun 7;237(75):165–166. doi: 10.1038/newbio237165a0. [DOI] [PubMed] [Google Scholar]
- George J., Devoret R., Radman M. Indirect ultraviolet-reactivation of phage lambda. Proc Natl Acad Sci U S A. 1974 Jan;71(1):144–147. doi: 10.1073/pnas.71.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman H. M., Abelson J. N., Landy A., Zadrazil S., Smith J. D. The nucleotide sequences of tyrosine transfer RNAs of Escherichia coli. Eur J Biochem. 1970 Apr;13(3):461–483. doi: 10.1111/j.1432-1033.1970.tb00950.x. [DOI] [PubMed] [Google Scholar]
- Hill R. F. Ultraviolet-induced lethality and reversion to prototrophy in Escherichia coli strains with normal and reduced dark repair ability. Photochem Photobiol. 1965 Jun;4(3):563–568. doi: 10.1111/j.1751-1097.1965.tb09774.x. [DOI] [PubMed] [Google Scholar]
- Howard-Flanders P. DNA repair. Annu Rev Biochem. 1968;37:175–200. doi: 10.1146/annurev.bi.37.070168.001135. [DOI] [PubMed] [Google Scholar]
- Ley R. D., Setlow R. B. Repair replication in Escherichia coli as measured by the photolysis of bromodeoxyuridine. Biophys J. 1972 Apr;12(4):420–431. doi: 10.1016/S0006-3495(72)86094-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meistrich M. L., Drake J. W. Mutagenic effects of thymine dimers in bacteriophage T4. J Mol Biol. 1972 Apr 28;66(1):107–114. doi: 10.1016/s0022-2836(72)80009-3. [DOI] [PubMed] [Google Scholar]
- Meistrich M. L., Shulman R. G. Mutagenic effect of sensitized irradiation of bacteriophage T4. J Mol Biol. 1969 Nov 28;46(1):157–167. doi: 10.1016/0022-2836(69)90063-1. [DOI] [PubMed] [Google Scholar]
- Miura A., Tomizawa J. I. Studies on radiation-sensitive mutants of E. coli. 3. Participation of the rec system in induction of mutation by ultraviolet irradiation. Mol Gen Genet. 1968;103(1):1–10. doi: 10.1007/BF00271151. [DOI] [PubMed] [Google Scholar]
- Nishioka H., Doudney C. O. Different modes of loss of photoreversibility of mutation and lethal damage in ultraviolet-light resistant and sensitive bacteria. Mutat Res. 1969 Sep-Oct;8(2):215–228. doi: 10.1016/0027-5107(69)90001-3. [DOI] [PubMed] [Google Scholar]
- PERSON S., BOCKRATH R. C., Jr DIFFERENTIAL MUTATION PRODUCTION BY THE DECAY OF INCORPORATED TRITIUM COMPOUNDS IN E. COLI. Biophys J. 1964 Sep;4:355–365. doi: 10.1016/s0006-3495(64)86788-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Person S., Osborn M. The conversion of amber suppressors to ochre suppressors. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1030–1037. doi: 10.1073/pnas.60.3.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
- Rupp W. D., Wilde C. E., 3rd, Reno D. L., Howard-Flanders P. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):25–44. doi: 10.1016/0022-2836(71)90204-x. [DOI] [PubMed] [Google Scholar]
- Setlow R. B., Carrier W. L. Pyrimidine dimers in ultraviolet-irradiated DNA's. J Mol Biol. 1966 May;17(1):237–254. doi: 10.1016/s0022-2836(66)80105-5. [DOI] [PubMed] [Google Scholar]
- Setlow R. B. The photochemistry, photobiology, and repair of polynucleotides. Prog Nucleic Acid Res Mol Biol. 1968;8:257–295. doi: 10.1016/s0079-6603(08)60548-6. [DOI] [PubMed] [Google Scholar]
- Squires C., Carbon J., Hill C. W. Glycine transfer RNA of Escherichia coli. I. Structural genes for two glycine tRNA species. J Mol Biol. 1970 Sep 28;52(3):557–569. doi: 10.1016/0022-2836(70)90419-5. [DOI] [PubMed] [Google Scholar]
- WITKIN E. M. Time, temperature, and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harb Symp Quant Biol. 1956;21:123–140. doi: 10.1101/sqb.1956.021.01.011. [DOI] [PubMed] [Google Scholar]